Análisis sistemático sobre la eficiencia comunicativa entre chatbots basados en reglas y modelos de lenguaje natural
Contenido principal del artículo
Resumen
Detalles del artículo
La Revista Universitas-XX1 se alinea con los principios de acceso abierto y colaboración académica al adoptar la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0). Esta licencia garantiza que los contenidos publicados puedan ser utilizados y compartidos ampliamente bajo las siguientes condiciones:
Atribución: Los autores y la revista deben ser reconocidos adecuadamente como los creadores del contenido original, proporcionando la referencia completa y el enlace correspondiente a la publicación.
Uso no comercial: Los contenidos no pueden ser utilizados con fines comerciales, preservando su propósito académico y educativo. Compartir igual: Las obras derivadas deben distribuirse bajo los mismos términos de esta licencia, fomentando la creación de conocimiento accesible y equitativo.
Al implementar esta licencia, la Revista Universitas-XXI refuerza su compromiso con la difusión de investigaciones de calidad, el acceso libre al conocimiento y la promoción de un entorno colaborativo entre investigadores, docentes y estudiantes de todo el mundo.
Esta decisión refleja los valores fundamentales de responsabilidad, ética y transparencia en el ámbito académico, asegurando que los aportes intelectuales sirvan como base para nuevas investigaciones y proyectos, respetando los derechos de los autores y de la comunidad científica.
Para más información sobre esta licencia, puede consultar el siguiente enlace: https://creativecommons.org/licenses/by-nc-sa/4.0/
Referencias
Abu Shawar, B., & Atwell, E. (2007). Chatbots: Are They Really Useful? LOAIT 2007 - International Workshop on Legal Ontologies and Artificial Intelligence Techniques, 29-40.
Amalia, R. S., & Suprayogi, M. (2019). Ensuring data correctness and bias-free AI functionalities in chatbots. Emerald Insight. Recuperado de https://www.emerald.com/insight/content/doi/10.1108/JHTT-02-2019-0021/full/html
AirDroid. (2024). Rule-Based vs. AI Chatbot: Which One is Better? Recuperado de www.airdroid.com
Badr, Y. (2024). Evolution of large language models and their role in shaping general artificial intelligence. Digital Transformation and Society, 3(1), 1-2. https://doi.org/10.1108/DTS-02-2024-088
Bhattacharyya, S.S. (2024). Study of adoption of artificial intelligence technology-driven natural large language model-based chatbots by firms for customer service interaction. Journal of Science and Technology Policy Management. https://doi.org/10.1108/JSTPM-11-2023-0201
Buhalis, D., & Yen, C. L. (2020). Leveraging inter-tourists interactions via chatbots to bridge academia, tourism industries and future societies. Emerald Insight. Recuperado de https://www.emerald.com/insight/content/doi/10.1108/JHTT-03-2020-0039/full/html
Caldarini, G., Jaf, S., & McGarry, K. (2022). A Literature Survey of Recent Advances in Chatbots. Information, 13(1), 41. https://doi.org/10.3390/info13010041
Ciechanowski, L., Przegalinska, A., Magnuski, M., & Gloor, P. (2019). Increasing customer service efficiency through artificial intelligence chatbot. Emerald Insight.
Chaves, A. P., & Gerosa, M. A. (2021). How Should My Chatbot Interact? A Survey on Human-Chatbot Interaction Design. International Journal of Human-Computer Interaction, 37(8), 729-758.
Dale, R. (2020). The return of the chatbots: The latest advances and challenges in chatbot technology. Natural Language Engineering, 26(6), 811-832.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171-4186. https://doi.org/10.18653/v1/N19-1423
El-Ateif, S., Idri, A., & Fernández-Alemán, J.L. (2024). On the differences between CNNs and vision transformers for COVID-19 diagnosis using CT and chest x-ray mono- and multimodality. Data Technologies and Applications, ahead-of-print. https://doi.org/10.1108/DTA-01-2023-0005
Emma Goldman. (2017, septiembre 29). Antes de Siri y Alexa, estaba ELIZA [Video]. YouTube. https://www.youtube.com/watch?v=RMK9AphfLco
Gnewuch, U., Morana, S., & Maedche, A. (2021). Designing Conversational Agents for Services: Reviewing Design Principles and Evaluating Their Effectiveness. Journal of the Association for Information Systems, 22(1), 163-204.
Hartmann, J., & Netzer, O. (2023). Natural Language Processing in Marketing. En K. Sudhir & O. Toubia (Eds.), Artificial Intelligence in Marketing (Vol. 20, pp. 191-215). Emerald Publishing Limited.
Hill, J., Randolph Ford, W., & Farreras, I. G. (2015). Real Conversations with Artificial Intelligence: A Comparison between Human–Human Online Conversations and Human–Chatbot Conversations. Computers in Human Behavior, 49, 245-250.
Hoyer, W.D., Kroschke, M., Schmitt, B., Kraume, K., & Shankar, V. (2020). Transforming the customer experience through new technologies. Journal of Service Research, 23(1), 3-24.
Hu, X., et al. (2018). Comparative study on the effectiveness of rule-based vs. PLN-based chatbots in tourism. Emerald Insight. Recuperado de https://www.emerald.com/insight/content/doi/10.1108/JHTT-04-2020-0050/full/html
Huang, Y., & Gursoy, D. (2024). Customers’ online service encounter satisfaction with chatbots: interaction effects of language style and decision-making journey stage. International Journal of Contemporary Hospitality Management. https://doi.org/10.1108/IJCHM-11-2023-1800
Hubtype. (2023). Rule-Based Chatbots vs. AI Chatbots: Key Differences. Recuperado de www.hubtype.com
Jindal, P., et al. (2020). Business impacts of NLP-based chatbot implementation in customer service. Emerald Insight. Recuperado de https://www.emerald.com/insight/content/doi/10.1108/JHTT-05-2019-0033/full/html
Kwartler, T. (2021). Text Analytics and Natural Language Processing. En M. Einhorn, M. Löffler, E. de Bellis, A. Herrmann, & P. Burghartz (Eds.), The Machine Age of Customer Insight (pp. 119-128). Emerald Publishing Limited.
Laranjo, L., Dunn, A. G., Tong, H. L., & Bashir, R. (2018). Conversational Agents in Healthcare: A Systematic Review. Journal of the American Medical Informatics Association, 25(9), 1248-1258.
Lara, D. C. P., & Gómez, V. J. G. (2020). Metodologías activas para la enseñanza y aprendizaje de los estudios sociales. Sociedad & Tecnología, 3(2), 2-10.
Ledro, C., Nosella, A. and Vinelli, A. (2022), "Artificial intelligence in customer relationship management: literature review and future research directions", Journal of Business & Industrial Marketing, Vol. 37 No. 13, pp. 48-63. https://doi.org/10.1108/JBIM-07-2021-0332
Ling, C., Nasir, M.H., & Pitra, Z. (2021). Understanding customer experience with AI-driven chatbots: a dual-process theory perspective. Journal of Business Research, 129, 170-183.
Liu, B., & Lane, I. (2016). Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling. arXiv preprint arXiv:1609.01454.
López, N. V., González, N. A., & Rodríguez, C. C. (2021). Implementation of Chatbot in Online Commerce, and Open Innovation. Journal of Open
Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact
Nicolescu, L., & Tudorache, M. T. (2022). Human-computer interaction in customer service: the experience with AI chatbots—a systematic literature review. Electronics, 11(10), 1579.
Paschek, D., Luminosu, C.T., & Draghici, A. (2017). Automating customer service through chatbots. Procedia Computer Science, 121, 350-358.
Pradella, C. (2013). Evaluating chatbot usability for improving business processes. International Journal of Business Management, 8(4), 45-60.
Pucci, V. R., Machado, R. A., Cardano, M., Kantorski, L. P., & Weiller, T. H. (2020). Técnica da entrevista discursiva em pesquisa qualitativa: relato de experiência. Rev. enferm. UFSM, e97-e97.
Silverio, M. (2024, mayo 17). ChatGPT: número de usuarios y estadísticas. PrimeWeb. Recuperado de https://www.primeweb.com.mx/chatgpt-usuarios-estadisticas
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information Processing Systems, 30.
Wang, X., & Jiang, Z. (2020). Recent Advances in Neural Chatbots. International Journal of Automation and Computing, 17(2), 251-266.
Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45.
Xue, J., Wang, Y.-C., Wei, C., Liu, X., Woo, J., & Kuo, C.-C. J. (2024). Bias and fairness in chatbots: An overview. APSIPA Transactions on Signal and Information Processing, 13(2), e102. http://dx.doi.org/10.1561/116.00000064