Acceptance of Generative AI in the Creative Industry: Examining the role of Brand Recognition and Trust in the AI adoption

Main Article Content

Dominika Weglarz
Cintia Pla-Garcia
Ana Isabel Jiménez-Zarco

Abstract

This study explores the factors influencing the adoption of Generative AI text-to-image tools in the creative industry, using an extended Unified Theory of Acceptance and Use of Technology (UTAUT) model. The objective is to assess how brand recognition and trust, alongside performance expectancy, effort expectancy, facilitating conditions, and social influence, shape the behavioral intention to use Generative AI tools. While previous research has emphasized the importance of UTAUT constructs in technology adoption, the influence of brand equity factors remains underexplored. This study bridges this gap and provides insights to enhance adoption strategies. Standardized questionnaires were used, incorporating UTAUT constructs and brand-related variables such as Brand Recognition and Brand Trust. The sample consisted of individuals working in the creative industry in the US and Spain, with 208 valid responses. The survey was distributed through creative online communities. Partial Least Squares Structural Equation Modeling was employed to validate the hypotheses, ensuring reliable and valid results. Key findings indicate that performance expectancy, facilitating conditions, and brand trust positively influence the behavioral intention to use Generative AI tools, while brand recognition negatively influences behavioral intention. Social influence and effort expectancy did not present statistically significant results. These insights contribute to developing effective adoption strategies for Generative AI in the creative industry.
 

Article Details

Section
Monographic section

References

Abbasi, M., Vassilopoulou, P. y Stergioulas, L. (2017). Technology roadmap for the Creative Industries. Creative Industries Journal, 10, 40-58. https://doi.org/10.1080/17510694.2016.1247627

Alhwaiti, M. (2023). Acceptance of Artificial Intelligence application in the post-covid era and its impact on faculty members’ occupational well-being and teaching self-efficacy: a path analysis using the UTAUT 2 Model. Applied Artificial Intelligence, 37(1). https://doi.org/10.1080/08839514.2023.2175110

Anantrasirichai, N. y Bull, D. (2022). Artificial intelligence in the creative industries: A review. Artificial Intelligence Review, 55, 589-656. https://doi.org/10.1007/s10462-021-10039-7

Ameen, N., Tarhini, A., Reppel, A. y Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548

Artechouse. (2023). World of AI Imagination. Artechouse. https://bit.ly/4aK2Hi3

Bagozzi, R. P. y Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327

Bowden, J. L. H. (2014). The process of customer engagement: A conceptual framework. Journal of Marketing Theory and Practice, 17(1), 63-74. https://doi.org/10.2753/MTP1069-6679170105

Cabrera-Sánchez, J. P., Villarejo-Ramos, Á. F., Liébana-Cabanillas, F. y Shaikh, A. A. (2021). Identifying relevant segments of AI applications adopters: Expanding the UTAUT2’s variables. Telematics and Informatics, 58, 101529. https://doi.org/10.1016/j.tele.2020.101529

Caporusso, N. (2023). Generative artificial intelligence and the emergence of creative displacement anxiety. Research Directs in Psychology and Behavior, 3(1). https://doi.org/10.53520/rdpb2023.10795

Chatterjee, S., Chaudhuri, R., Vrontis, D., Thrassou, A. y Ghosh, S. K. (2021). Adoption of artificial intelligence-integrated CRM systems in agile organizations in India. Technological Forecasting and Social Change, 168, 120783. https://doi.org/10.1016/j.techfore.2021.120783

Chen, J. (2024). The Role of AI: speculative design in redefining artistic collaboration. Journal of Ecohumanism, 3(8), 2261-2272. https://doi.org/10.62754/joe.v3i8.4899

Chui, M., Hall, B., Mayhew, H. y Singla, A. (2022, December 6). The state of AI in 2022 and a half decade in review. McKinsey & Company. http://bit.ly/4hYSYrj

Chuyen, N. y Vinh, N. (2023). An empirical analysis of predictors of AI-powered design tool adoption. TEM Journal, 12(3), 1012-1021.https://doi.org/10.18421/tem123-28

De Almeida Pedro, E., Panizzon, M. y Weber, C. (2023). OHS Professionals AI adoption: A UTAUT Research in Brazilian Industry. 2023 15th IEEE International Conference on Industry Applications (INDUSCON), 850-857. https://doi.org/10.1109/INDUSCON58041.2023.10374850.

García, M. L. M. y Yábar, D. P. (2023). Impact of brand awareness on consumer loyalty. Scientific Journal of Applied Social and Clinical Science, 3(12), 2-9. https://doi.org/10.22533/at.ed.2163122307068

Hair, J. F., Hult, G. T. M., Ringle, C. y Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Sage.

Hair, J. F., Risher, J. J., Sarstedt, M. y Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203

Handayani, W. P. P. (2023). The UTAUT implementation model in defining the behavioral intention of mobile banking users. Jurnal Manajemen Bisnis, 14(2), 25-39. https://doi.org/10.18196/mb.v14i2.18649

Hatzius, J., Briggs, J., Kodnani, D., Pierdomenico, G. y Goldman Sachs & Co. LLC. (2023). The potentially large effects of artificial intelligence on economic growth (By Goldman Sachs & Co. LLC). https://bit.ly/3ElOOKX

Hem, L. E., De Chernatony, L. e Iversen, N. M. (2003). Factors influencing successful brand extensions. Journal of Marketing Management, 19(7-8), 781-806. https://doi.org/10.1362/026725703322498109

Hess, J. y Story, J. (2005). Trust‐based commitment: Multidimensional consumer‐brand relationships. Journal of Consumer Marketing, 22(6), 313-322. https://doi.org/10.1108/07363760510623902

Izza, A. M., Ardiansyah, M. N., Barkah, F. y Romdonny, J. (2024). Synergistic effects of content marketing and influencers marketing on the formation of brand awareness and purchase interest of TikTok Shop users (Cirebon City case study). International Journal of Social Service and Research, 4(5), 1339-1347. https://doi.org/10.46799/ijssr.v4i05.781

Jiang, J., Ma, J., Huang, X., Zhou, J. y Chen, T. (2024). Extend UTAUT2 model to analyze user behavior of China Construction Bank Mobile App. SAGE Open, 14(4). https://doi.org/10.1177/21582440241287070

Kathuria, S., Bansal, H. y Balhara, S. (2018). Impact of Brand Recognition on Consumer Attraction: A Study of Telecom Sector. Researchers World, Journal of Arts Science & Commerce, 9(1), 57-63. https://doi.org/10.18843/rwjasc/v9i1/07

Maican, C., Sumedrea, S., Tecău, A., Nichifor, E., Chițu, I., Lixăndroiu, R. y Brătucu, G. (2023). Factors influencing the behavioural intention to use AI-generated images in business. Journal of Organizational and End User Computing. https://doi.org/10.4018/joeuc.330019

Menon, D. y Shilpa, K. (2023). Chatting with ChatGPT: Analyzing the factors influencing users’ intention to use OpenAI’s ChatGPT using the UTAUT model. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e20962

Rios, R. E. y Riquelme, H. (2010). Sources of brand equity for online companies. Journal of Research in Interactive Marketing, 4(3), 214-240. https://doi.org/10.1108/17505931011070587

Roets, C. R. Q., Bevan-Dye, A. L. y Viljoen, W. P. (2014). Influence of social image and brand trust on mobile phone brand equity amongst African Generation Y students. Mediterranean Journal of Social Sciences, 5(21), 75-84. https://doi.org/10.5901/mjss.2014.v5n21p75

Rubio, N., Oubiña, J. y Villaseñor, N. (2014). Brand awareness–Brand quality inference and consumers’ risk perception in store brands of food products. Food Quality and Preference, 32, 289-298. https://doi.org/10.1016/j.foodqual.2013.09.006

Sanchez, T. (2023). Examining the text-to-image community of practice: Why and how do people prompt generative AIs? Creativity and Cognition. https://doi.org/10.1145/3591196.359305

Sanmukhiya, C. (2020). A PLS –SEM approach to the UTAUT model: the case of Mauritius. Annals of Social Sciences & Management Studies, 6(1). https://doi.org/10.19080/asm.2020.06.555677

Sasmita, J. y Mohd Suki, N. (2015). Young consumers’ insights on brand equity: Effects of brand association, brand loyalty, brand awareness, and brand image. International Journal of Retail & Distribution Management, 43(3), 276-292. https://doi.org/10.1108/IJRDM-02-2014-0024

Smith, C. (2022, December 22). The unreal exhibition showcases AI-handling talents of 'prompt writers'. trend hunter. http://bit.ly/3EgCX0S

Soper, D. S. (2024). A-priori sample size calculator for structural equation models [Software]. https://bit.ly/4hPigrm

Upadhyay, N., Upadhyay, S. y Dwivedi, Y. K. (2022). Theorizing artificial intelligence acceptance and digital entrepreneurship model. International Journal of Entrepreneurial Behaviour & Research, 28(5), 1138-1166. http://dx.doi.org/10.1108/IJEBR-01-2021-0052

Venkatesh, V., Morris, M., Davis, G. B. y Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J. Y. y Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412

Vinchon, F., Lubart, T., Bartolotta, S., Gironnay, V., Botella, M., Bourgeois-Bougrine, S., Burkhardt, J., Bonnardel, N., Corazza, G. E., Glăveanu, V., Hanson, M. H., Ivcevic, Z., Karwowski, M., Kaufman, J. C., Okada, T., Reiter‐Palmon, R. y Gaggioli, A. (2023). Artificial intelligence and creativity: A manifesto for collaboration. The Journal of Creative Behavior, 57(4), 472-484. https://doi.org/10.1002/jocb.597

Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., Chandak, P., Liu, S., Van Katwyk, P., Deac, A., Anandkumar, A., Bergen, K., Gomes, C. P., Ho, S., Kohli, P., Lasenby, J., Leskovec, J., Liu, T., Manrai, A. y Zitnik, M. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620(7972), 47-60. https://doi.org/10.1038/s41586-023-06221-2

Wang, H., Wei, J. y Yu, C. (2008). Global brand equity model: Combining customer-based with product-market outcome approaches. Journal of Product & Brand Management, 17(5), 305-316. https://doi.org/10.1108/10610420810896068

Westland, J. C. (2010). Lower bounds on sample size in structural equation modeling. Electronic Commerce Research and Applications, 9(6), 476-487. https://doi.org/10.1016/j.elerap.2010.07.003

Yin, M., Han, B., Ryu, S. y Min, H. (2023). Acceptance of generative AI in the creative industry: Examining the role of AI anxiety in the UTAUT2 model. In Lecture Notes in Computer Science, 14059, 288-310. https://doi.org/10.1007/978-3-031-48057-7_18

Zhang, W. (2020). A study on the user acceptance model of artificial intelligence music based on UTAUT. Journal of the Korea Society of Computer and Information, 25(1), 25-33.https://doi.org/10.9708/jksci.2020.25.06.025