Factors affecting auditors’ decisions to adopt Big Data analytics: a mixed method study
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authorship: The list of authors signing must include only those people who have contributed intellectually to the development of the work. Collaboration in the collection of data is not, by itself, a sufficient criterion of authorship. "Retos" declines any responsibility for possible conflicts arising from the authorship of the works that are published.
Copyright: The Salesian Polytechnic University preserves the copyrights of the published articles, and favors and allows their reuse under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ecuador license. They may be copied, used, disseminated, transmitted and publicly displayed, provided that: i) the authorship and the original source of their publication (journal, editorial and work URL) are cited; (Ii) are not used for commercial purposes; Iii) mention the existence and specifications of this license.
References
Ab Hamid, M. R., Sami, W. y Sidek, M. M. (2017, September). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890(1), 012163). IOP Publishing. https://doi.org/10.1088/1742-6596/890/1/012163
Abu Al Rob, M., Mohd Nor, M. N. y Salleh, Z. (2024). The influence of big data analytics adoption on auditors' professional skepticism in risk assessment: An empirical study using the technology acceptance model. Journal of Logistics, Informatics and Service Science, 11(11), 158-177. https://doi.org/10.33168/JLISS.2024.1110
Abu Al Rob, M., Mohd Nor, M. N. y Salleh, Z. (2024). The role of training in Big Data Analytics adoption: an empirical study of auditors using the technology acceptance model. Electronic Journal of Business Research Methods, 22(2), 30-45. https://doi.org/10.34190/ejbrm.22.2.3752
Adrianto, Z. (2018). Auditing in the era of big data: a literature review. Jurnal Akuntansi dan Keuangan, 17(1), 1-6.
Al Amin, M., Nowsin, N., Hossain, I. y Bala, T. (2020). Impact of social media on consumer buying behaviour through online value proposition: A study on e-commerce business in Bangladesh. Academy of Strategic Management Journal, 19(5), 1-18. bit.ly/3EycBHG
Alyoussef, I. Y. y Al-Rahmi, W. M. (2022). Big data analytics adoption via lenses of Technology Acceptance Model: empirical study of higher education. Entrepreneurship and Sustainability Issues, 9(3), 399. https://doi.org/10.9770/jesi.2022.9.3(24)
Ajibade, P. (2018). Technology acceptance model limitations and criticisms: Exploring the practical applications and use in technology-related studies, mixed-method, and qualitative researches. Library Philosophy and Practice, 9.
Braun, V. y Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology, 3(2), 77- 1001. https://doi.org/10.1191/1478088706qp063oa
Brock, V. y Khan, H. U. (2017). Big data analytics: does organizational factor matters impact technology acceptance? Journal of Big Data, 4(1), 1-28. https://doi.org/10.1186/s40537-017-0081-8
Bumblauskas, D., Nold, H., Bumblauskas, P. e Igou, A. (2017). Big data analytics: transforming data to action. Business Process Management Journal, 23(3), 703-720. https://doi.org/10.1108/BPMJ-03-2016-0056
Cabrera-Sánchez, J. P. y Villarejo-Ramos, A. F. (2020). Factors affecting the adoption of big data analytics in companies. Revista de Administração de Empresas, 59, 415-429. https://doi.org/10.1590/S0034-759020190607.
Chopdar, P. K., Korfiatis, N., Sivakumar, V. J. y Lytras, M. D. (2018). Mobile shopping apps adoption and perceived risks: A cross-country perspective utilizing the Unified Theory of Acceptance and Use of Technology. Computers in Human Behavior, 86, 109-128. https://doi.org/10.1016/j.chb.2018.04.017.
Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). SAGE Publications.
Dagilienė, L. y Klovienė, L. (2019). Motivation to use big data and big data analytics in external auditing. Managerial Auditing Journal. https://doi.org/10.1108/MAJ-01-2018-1773
Davis, F. D., Bagozzi, R. P. y Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
Davis, F. D. y Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. International Journal of Human-Computer Studies, 45(1), 19-45. https://doi.org/10.1006/ijhc.1996.0040
Demoulin, N. T. y Coussement, K. (2020). Acceptance of text-mining systems: The signaling role of information quality. Information & Management, 57(1), 103120. https://doi.org/10.1016/j.im.2018.10.006
DiCicco‐Bloom, B. y Crabtree, B. F. (2006). The qualitative research interview. Medical education, 40(4), 314-321. https://doi.org/10.1111/j.1365-2929.2006.02418.x
Diop, E. B., Zhao, S. y Duy, T. V. (2019). An extension of the technology acceptance model for understanding travelers’ adoption of variable message signs. PLoS one, 14(4), e0216007. https://doi.org/10.1371/journal.pone.0216007.
Eilifsen, A., Kinserdal, F., Messier, W. F. y McKee, T. E. (2020). An exploratory study into the use of audit data analytics on audit engagements. Accounting Horizons, 34(4), 75-103. https://doi.org/10.2308/HORIZONS-19-121.
Fornell, C. y Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Gangwar, H. (2020). Big Data Analytics usage and business performance: integrating the Technology Acceptance Model (TAM) and Task Technology Fit (TTF) Model. Electronic Journal of Information Systems Evaluation, 23(1), 45-64. https://doi.org/10.34190/EJISE.20.23.1.004
Glasofer, A. y Townsend, A. B. (2020). Determining the level of evidence: Nonexperimental research designs. Nursing 2020 Critical Care, 15(1), 24-27. https://doi.org/10.1097/01.NURSE.0000731852.39123.e1
Grimaldo, J. R. y Uy, C. (2020). Factors affecting recruitment officers' intention to use online tools. Review of Integrative Business and Economics Research, 9, 194-208. https://bit.ly/4hUCQql
Hair, J. F., Risher, J. J., Sarstedt, M. y Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Henseler, J., Ringle, C. M. y Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. En New challenges to international marketing (Vol. 20, pp. 277-319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014
Hossain, S. A., Bao, Y., Hasan, N. y Islam, M. F. (2020). Perception and prediction of intention to use online banking systems: An empirical study using extended TAM. International Journal of Research in Business and Social Science (2147-4478), 9(1), 112-126. https://doi.org/10.20525/ijrbs.v9i1.591
İdil, K. A. Y. A. y Akbulut, D. H. (2018). Big data analytics in financial reporting and accounting. Press Academia Procedia, 7(1), 256-259. https://doi.org/10.17261/Pressacademia.2018.892
Khaldi, K. (2017). Quantitative, qualitative or mixed research: Which research paradigm to use? Journal of Educational and Social Research, 7(2), 15-30. https://doi:10.5901/jesr.2017.v7n2p15
Levy, P. S. y Lemeshow, S. (2013). Sampling of populations: Methods and applications (4th ed.). John Wiley & Sons.
Li, H. L. y Lai, M. M. (2011). Demographic differences and internet banking acceptance. MIS REVIEW: An International Journal, 16(2), 55-92. https://doi.org/10.6131/MISR.201103_16(2).0003
Mei, Y. C. y Aun, N. B. (2019). Factors influencing consumers' perceived usefulness of M-Wallet in Klang valley, Malaysia. Review of Integrative Business and Economics Research, 8, 1-23. https://bit.ly/4hLAhY1
Müller, S. D. y Jensen, P. (2017). Big data in the Danish industry: application and value creation. Business Process Management Journal. https://doi.org/10.1108/BPMJ-01-2016-0017
No, W. G., Lee, K., Huang, F. y Li, Q. (2019). Multidimensional audit data selection (MADS): A framework for using data analytics in the audit data selection process. Accounting Horizons, 33(3), 127-140. https://doi.org/10.2308/acch-52453
Ofori, D. y Appiah-Nimo, C. (2019). Determinants of online shopping among tertiary students in Ghana: An extended technology acceptance model. Cogent Business & Management, 6(1), 1644715. https://doi.org/10.1080/23311975.2019.1644715
Olufemi, J. (2018). Considerations for the adoption of Cloud-based Big Data Analytics in SMALL BUSINESS ENTERPRISES. Electronic Journal of Information Systems Evaluation, 21(2), 63-79. https://bit.ly/4hP5NDW
Shahbaz, M., Gao, C., Zhai, L., Shahzad, F. y Hu, Y. (2019). Investigating the adoption of big data analytics in healthcare: the moderating role of resistance to change. Journal of Big Data, 6(1), 1-20. https://doi.org/10.1186/2047-2501-2-3.
Tarabasz, A. y Poddar, G. (2019). Factors influencing adoption of wearable devices in Dubai. Journal of Economics and Management, 36(2), 123-143. https://bit.ly/4jKMa1w
Verma, S., Bhattacharyya, S. S. y Kumar, S. (2018). An extension of the technology acceptance model in the big data analytics system implementation environment. Information Processing & Management, 54(5), 791-806. https://doi.org/10.1016/j.ipm.2018.01.004