Human resource analytics for change and happiness management
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authorship: The list of authors signing must include only those people who have contributed intellectually to the development of the work. Collaboration in the collection of data is not, by itself, a sufficient criterion of authorship. "Retos" declines any responsibility for possible conflicts arising from the authorship of the works that are published.
Copyright: The Salesian Polytechnic University preserves the copyrights of the published articles, and favors and allows their reuse under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ecuador license. They may be copied, used, disseminated, transmitted and publicly displayed, provided that: i) the authorship and the original source of their publication (journal, editorial and work URL) are cited; (Ii) are not used for commercial purposes; Iii) mention the existence and specifications of this license.
References
Abellán-Sevilla, A.-J. y Ortiz-de-Urbina-Criado, M. (2023). Smart human resource analytics for happiness management. Journal of Management Development, 42(6), 514-525. https://doi.org/10.1108/JMD-03-2023-0064
Al Ariss, A., Cascio, W.F. y Paauwe, J. (2014), Talent management: current theories and future research directions. Journal of World Business, 49(2), 173-179. https://doi.org/10.1016/j.jwb.2013.11.001
Álvarez-Gutiérrez, F.J., Stone, D.L., Castaño, A.M. and García-Izquierdo, A.L. (2022). Human resources analytics: a systematic review from a sustainable management approach. Journal of Work and Organizational Psychology, 38(3), 129-147. https://doi.org/10.5093/jwop2022a18
Arora, M., Prakash, A., Dixit, S., Mittal, A. y Singh, S. (2023). A critical review of HR analytics: visualization and bibliometric analysis approach. Information Discovery and Delivery, 51(3), 267-282. https://doi.org/10.1108/IDD-05-2022-0038
Ben-Gal, H.C. (2019). An ROI-based review of HR analytics: practical implementation tools. Personnel Review, 48(6), 1429-1448. https://doi.org/10.1108/PR-11-2017-0362
Brandt, P.M. y Herzberg, P.Y. (2020). Is a cover letter still needed? Using LIWC to predict application success”, International Journal of Selection and Assessment, 28(4), 417-429. https://doi.org/10.1111/ijsa.12299
Chang, Y.-L. y Ke, J. (2024). Socially responsible artificial intelligence empowered people analytics: a novel framework towards sustainability. Human Resource Development Review, 23(1), 88-120. https://doi.org/10.1177/15344843231200930
Chatterjee, S., Chaudhuri, R., Vrontis, D. y Siachou, E. (2021). Examining the dark side of human resource analytics: an empirical investigation using the privacy calculus approach. International Journal of Manpower, 43(1), 52-74. https://doi.org/10.1108/IJM-02-2021-0087
Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E. y Herrera, F. (2011). Science mapping software tools: review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382-1402. https://doi.org/10.1002/asi.21525
Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E. y Herrera, F. (2012). SciMAT: a new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609-1630. https://doi.org/10.1002/asi.22688
Cobo, M.J., Jürgens, B., Herrero-Solana, V., Martínez, M.A., y Herrera-Viedma, E. (2018). Industry 4.0: a perspective based on bibliometric analysis. Procedia Computer Science, 139, 364-371. https://doi.org/10.1016/j.procs.2018.10.278
Coolen, P., van den Heuvel, S., Van De Voorde, K. y Paauwe, J. (2023). Understanding the adoption and institutionalization of workforce analytics: A systematic literature review and research agenda. Human Resource Management Review, 33(4), 100985. https://doi.org/10.1016/j.hrmr.2023.100985
Coron, C. (2022). Quantifying human resource management: a literature review. Personnel Review, 51(4), 1386-1409. https://doi.org/10.1108/PR-05-2020-0322
Dahlbom, P., Siikanen, N., Sajasalo, P. y Jarvenpää, M. (2020). Big data and HR analytics in the digital era. Baltic Journal of Management, 15(1), 120-138. https://doi.org/10.1108/BJM-11-2018-0393
Díaz-García, G.A. Ortiz-de-Urbina-Criado, M. y Ravina-Ripoll, R. (2023). Happy leadership, now more than ever. International Journal of Happiness and Development, in press, https://doi.org/10.1504/IJHD.2023.10060264
Edwards, M.R., Charlwood, A., Guenole, N. y Marler, J. (2022). HR analytics: an emerging field finding its place in the world alongside simmering ethical challenges. Human Resource Management Journal, https://doi.org/10.1111/1748-8583.12435
Ellmer, M. y Reichel, A. (2021). Staying close to business: the role of epistemic alignment in rendering HR analytics outputs relevant to decision-makers. The International Journal of Human Resource Management, 32(12), 2622-2642. https://doi.org/10.1080/09585192.2021.1886148
Espegren, Y. y Hugosson, M. (2023). HR analytics-as-practice: a systematic literature review. Journal of Organizational Effectiveness: People and Performance, https://doi.org/10.1108/JOEPP-11-2022-0345
Falletta, S.V. y Combs, W.L. (2021). The HR analytics cycle: a seven- step process for building evidence-based and ethical HR analytics capabilities. Journal of Work-Applied Management, 13(1), 51-68. https://doi.org/10.1108/JWAM-03-2020-0020
Fernández, V. y Gallardo-Gallardo, E. (2021). Tackling the HR digitalization challenge: key factors and barriers to HR analytics adoption. Competitiveness Review, 31(1), 162-187. https://doi.org/10.1108/CR-12-2019-0163
Fu, N., Keegan, A. y McCartney, S. (2023). The duality of HR analysts' storytelling: showcasing and curbing. Human Resource Management Journal, 33(2), 261-286. https://doi.org/10.1111/1748-8583.12466
Ghasemaghaei, M. (2020). Improving organizational performance through the use of big data. Journal of Computer Information Systems, 60(5), 395-408. https://doi.org/10.1080/08874417.2018.1496805
Greasley, K. y Thomas, P. (2020). HR analytics: the onto-epistemology and politics of metricised HRM. Human Resource Management Journal, 30(4), 494-507. https://doi.org/10.1111/1748-8583.12283
Guenole, N., Ferrar, J. y Feinzig, S. (2017). The power of people: learn how successful organizations use workforce analytics to improve business performance, Pearson Education, Inc, USA.
Gurusinghe, R.N., Arachchige, B.J.H. y Dayarathna, D. (2021). Predictive HR analytics and talent management: a conceptual framework. Journal of Management Analytics, 8(2), 195-221. https://doi.org/ 10.1080/23270012.2021.1899857
Hewett, R. y Shantz, A. (2021). A theory of HR co-creation. Human Resource Management Review, 31(4), 100823. https://doi.org/10.1016/j.hrmr.2021.100823
Hussain, T., Lei, S., Akram, T., Haider, M.J., Hussain, S.H. y Ali, M. (2018). Kurt Lewin's change model: a critical review of the role of leadership and employee involvement in organizational change. Journal of Innovation & Knowledge, 3(3), 123-127. https://doi.org/10.1016/j.jik.2016.07.002
Jiang, Y. y Akdere, M. (2022). An operational conceptualization of human resource analytics: implications for in human resource development. Industrial and Commercial Training, 54(1), 183-200. https://doi.org/10.1108/ICT-04-2021-0028
Kiran, P.R., Chaubey, A. y Shastri, R.K. (2023). Role of HR analytics and attrition on organisational performance: a literature review leveraging the SCM-TBFO framework. Benchmarking: An International Journal, https://doi.org/10.1108/BIJ-06-2023-0412
Lee J.Y. y Lee Y. (2023). Integrative literature review on people analytics and implications from the perspective of human resource development. Human Resource Development Review, 23(1), 58-87. https://doi.org/10.1177/15344843231217181
Lewin, K. (1951). Field theory in social science: selected theoretical papers, Dorwin Cartwright.
Margherita, A. (2022). Human resources analytics: a systematization of research topics and directions for future research. Human Resource Management Review, 32(2), 100795. https://doi.org/ 10.1016/j.hrmr.2020.100795
Markman, G.D. (2022). Will your study make the world a better place? Journal of Management Studies, 59(6), 1597-1603. https://doi.org/10.1111/joms.12843
Marler, J.H. y Boudreau, J.W. (2017). An evidence-based review of HR analytics. The International Journal of Human Resource Management, 28(1), 3-26. https://doi.org/10.1080/09585192.2016.1244699
Martinko, M.J., Harvey, P. y Dasborough, M.T. (2011). Attribution theory in the organizational sciences: a case of unrealized potential. Journal of Organizational Behavior, 32(1), 144-149. https://doi.org/10.1002/job.690
McCartney, S. y Fu, N. (2022a). Promise versus reality: a systematic review of the ongoing debates in people analytics. Journal of Organizational Effectiveness: People and Performance, 9(2), 281-311. https://doi.org/10.1108/JOEPP-01-2021-0013
McCartney, S. y Fu, N. (2022b). Bridging the gap: why, how and when HR analytics can impact organizational performance. Management Decision, 60(13), 25-47. https://doi.org/10.1108/MD-12-2020-1581
McCartney, S., Murphy, C. and McCarthy, J. (2020). 21st century HR: a competency model for the emerging role of HR analysts. Personnel Review, 50(6), 1495-1513. https://doi.org/10.1108/pr-12-2019-0670
Moral-Muñoz, J.A., Herrera-Viedma, E., Santisteban-Espejo, A. y Cobo, M.J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. El profesional de la información, 29(1), e290103. https://doi.org/10.3145/epi.2020.ene.03
Pessach, D., Singer, G., Avrahami, D., Ben-Gal, H.C., Shmueli, E. y Ben-Gal, I. (2020). Employees recruitment: a prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, 113290. https://doi.org/10.1016/j.dss.2020.113290
Peeters, T., Paauwe, J. y Van De Voorde, K. (2020). People analytics effectiveness: developing a framework. Journal of Organizational Effectiveness: People and Performance, 7(2), 203-219. https://doi.org/10.1108/JOEPP-04-2020-0071
Polzer, J.T. (2022). The rise of people analytics and the future of organizational research. Research in Organizational Behavior, 42, 100181. https://doi.org/10.1016/j.riob.2023.100181
Pongpisutsopa, S., Thammaboosadee, S. y Chuckpaiwong R. (2020). Factors affecting HR analytics adoption: a systematic review using literature weighted scoring approach. Asia Pacific Journal of Information Systems, 3(4), 847-878. https://doi.org/10.14329/apjis.2020.30.4.847
Qamar, Y. y Samad, T.A. (2022). Human resource analytics: a review and bibliometric análisis. Personnel Review, 51(1), 251-283. https://doi.org/10.1108/PR-04-2020-0247
Ramachandran, R., Babu, V. y Murugesan, V.P. (2023). Human resource analytics revisited: a systematic literature review of its adoption, global acceptance and implementation. Benchmarking: An International Journal, https://doi.org/10.1108/BIJ-04-2022-0272
Ravina-Ripoll, R., Foncubierta- Rodríguez, M.J. y López-Sánchez, J.A. (2021). Certification Happiness Management: an integral instrument for human resources management in post-COVID-19 era. International Journal of Business Environment, 12(3), 287-299. https://doi.org/10.1504/IJBE.2021.116606
Ravina-Ripoll, R., Galván-Vela, E., Sorzano-Rodríguez, D.M. y Ruíz-Corrales, M. (2023). Mapping intrapreneurship through the dimensions of happiness at work and internal communication. Corporate Communications: An International Journal, 28(2), 230-248, https://doi.org/10.1108/CCIJ-03-2022-0037.
Ravina-Ripoll, R., Marchena-Domínguez, J. y Montañés-Del-Río, M.Á. (2019a). Happiness management in the age of industry 4.0. Retos: Revista de Ciencias Administrativas y Económicas, 9(18),189-202. DOI: https://doi.org/10.17163/ret.n18.2019.01
Ravina-Ripoll, R., Tobar-Pesantez, L.B. y Marchena-Domínguez, J. (2019b). Happiness Management: A Lighthouse for Social Wellbeing, Creativity and Sustainability, Peter Lang, Bern, Berlin, Bruxelles, New York, Oxford, Warszawa, Wien, http://dx.doi.org/10.3726/b15813.
Ravina-Ripoll, R., Villena-Manzanares, F. y Gutiérrez-Montoya, G. A. (2017). Una aproximación teórica para mejorar los resultados de innovación en las empresas desde la perspectiva del “Happiness Management”. RETOS. Revista de Ciencias de la Administración y Economía, 7(14), 113-129. http://dx.doi.org/10.17163/ret.n14.2017.06
Robbins, S.P. y Judge, T.A. (2018). Organizational behavior (What's new in management). Pearson, USA. 18th ed.
Sánchez-Bayón, A. (2020). Una Historia de RR.HH. y su transformación digital: Del fordismo al talentismo y la gestión de la felicidad. Revista de la Asociacion Española de Especialistas en Medicina del Trabajo, 29(3), 177-256. https://goo.su/JBF9b
Singh, T. y Malhotra, S. (2020). Workforce analytics: increasing managerial efficiency in human resource. International Journal of Scientific and Technology Research, 9(1), 3260-3266. Available at: https://goo.su/NuteE
Singh, S. y Muduli, A. (2021). Factors influencing information sharing intention for human resource analytics. Economic Studies Journal, 3, 115-133. Available at: https://goo.su/b59buL
Sung, S.Y. y Choi, J.N. (2014). Multiple dimensions of human resource development and organizational performance. Journal of Organizational Behavior, 35(6), 851-870. https://doi.org/10.1002/job.1933
Sripathi, K. y Madhavaiah, A. (2018). Are HR professionals ready to adopt HR analytics? A study on analytical skills of HR professionals. Journal of Advance Research in Dynamical & Control Systems, 10(08-Special Issue), 303-308. Available at: https://goo.su/cMN7V
Strohmeier, S., Collet, J. y Kabst, R. (2022). (How) do advanced data and analyses enable HR analytics success? A neo-configurational análisis. Baltic Journal of Management, 17(3), 285-303. https://doi.org/10.1108/BJM-05-2021-0188
Thakral, P., Srivastava, P.R., Dash, S.S., Jasimuddin, S.M. y Zhang, Z. (2023). Trends in the thematic landscape of HR analytics research: a structural topic modeling approach. Management Decision, 61(12), 3665-3690. https://doi.org/10.1108/MD-01-2023-0080
van den Heuvel, S. y Bondarouk, T. (2017). The rise (and fall?) of HR analytics: a study into the future application, value, structure, and system support. Journal of Organizational Effectiveness: People and Performance, 4(2), 157-178. https://doi.org/10.1108/JOEPP-03-2017-0022
Vargas, R., Yurova, Y.V., Ruppel, C.P., Tworoger, L.C. y Greenwood, R. (2018). Individual adoption of HR analytics: a fine-grained view of the early stages leading to adoption. The International Journal of Human Resource Management, 29(22), 3046-3067. https://doi.org/10.1080/09585192.2018.1446181
Wang, L., Zhou, Y., Sanders, S., Marler, J.H. y Zou, Y. (2024). Determinants of effective HR analytics Implementation: An In-Depth review and a dynamic framework for future research. Journal of Business Research, Volume 170, 114312. https://doi.org/10.1016/j.jbusres.2023.114312.
Werbel, J. y Balkin, D.B. (2010). Are human resource practices linked to employee misconduct?: a rational choice perspective. Human Resource Management Review, 20(4), 317-326. https://doi.org/10.1016/j.hrmr.2009.10.002
Wiblen, S. y Marler, J.H. (2021). Digitalised talent management and automated talent decisions: the implications for HR professionals. The International Journal of Human Resource Management, 32(12), 2592-2621, https://doi.org/10.1080/09585192.2021.1886149
Wirges, F. y Neyer, A.K. (2023). Towards a process-oriented understanding of HR analytics: implementation and application. Review of Managerial Science, 17, 2077-2108. https://doi.org/10.1007/s11846-022-00574-0
Yoon S.W., Han S.-H. y Chae C. (2023). People analytics and human resource development – research landscape and future needs based on bibliometrics and scoping review. Human Resource Development Review, vol. 23, n. 1. 30–57. DOI: 10.1177/15344843231209362
Zeidan, S. y Itani, N. (2020). HR analytics and organizational effectiveness. International Journal on Emerging Technologies, 11(2), 683-688. Available at: https://goo.su/GL3OC2C
Zubac, A., Dasborough, M., Hughes, K., Jiang, Z., Kirkpatrick, S., Martinsons, M.G., Tucker, D. y Zwikael, O. (2021). The strategy and change interface: understanding “enabling” processes and cognitions. Management Decision, 59(3), 481-505. https://doi.org/10.1108/MD-03-2021-083