Optimización de la integridad estructural de las estaciones de ala de aeronaves de combate: un enfoque de análisis de elementos finitos
Contenido principal del artículo
Resumen
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La Universidad Politécnica Salesiana de Ecuador conserva los derechos patrimoniales (copyright) de las obras publicadas y favorecerá la reutilización de las mismas. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento / No Comercial-Sin Obra Derivada 4.0 Ecuador: se pueden copiar, usar, difundir, transmitir y exponer públicamente.
El autor/es abajo firmante transfiere parcialmente los derechos de propiedad (copyright) del presente trabajo a la Universidad Politécnica Salesiana del Ecuador, para las ediciones impresas.
Se declara además haber respetado los principios éticos de investigación y estar libre de cualquier conflicto de intereses.
El autor/es certifican que este trabajo no ha sido publicado, ni está en vías de consideración para su publicación en ninguna otra revista u obra editorial.
El autor/es se responsabilizan de su contenido y de haber contribuido a la concepción, diseño y realización del trabajo, análisis e interpretación de datos, y de haber participado en la redacción del texto y sus revisiones, así como en la aprobación de la versión que finalmente se remite en adjunto.
Referencias
K. Sinha, T. Klimmek, M. Schulze, and V. Handojo, “Loads analysis and structural optimization of a high aspect ratio, composite wing aircraft,” CEAS Aeronautical Journal, vol. 12, no. 2, pp. 233–243, Apr 2021. [Online]. Available: https://doi.org/10.1007/s13272-021-00494-x
B. D. Upadhyay, S. S. Sonigra, and S. D. Daxini, “Numerical analysis perspective in structural shape optimization: A review post 2000,” Advances in Engineering Software, vol. 155, p. 102992, 2021. [Online]. Available: https://doi.org/10.1016/j.advengsoft.2021.102992
N. Zimmermann and P. H. Wang, “A review of failure modes and fracture analysis of aircraft composite materials,” Engineering Failure Analysis, vol. 115, p. 104692, 2020. [Online]. Available: https://doi.org/10.1016/j.engfailanal.2020.104692
R. L. Muhanna and S. Shahi, Uncertainty in Boundary Conditions—An Interval Finite Element Approach. Cham: Springer International Publishing, 2020, pp. 157–167. [Online]. Available: https://doi.org/10.1007/978-3-030-40814-5_20
T. Martins, V. Infante, L. Sousa, A. Fonseca, P. Antunes, A. Moura, and B. Serrano, “Numerical and experimental study of aircraft structural health,” International Journal of Fatigue, vol. 132, p. 105348, 2020. [Online]. Available: https://doi.org/10.1016/j.ijfatigue.2019.105348
J. Lim, C. You, and I. Dayyani, “Multi-objective topology optimization and structural analysis of periodic spaceframe structures,” Materials & Design, vol. 190, p. 108552, 2020. [Online]. Available: https://doi.org/10.1016/j.matdes.2020.108552
C. Touzé, A. Vizzaccaro, and O. Thomas, “Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques,” Nonlinear Dynamics, vol. 105, no. 2, pp. 1141–1190, Jul 2021. [Online]. Available: https://doi.org/10.1007/s11071-021-06693-9
C. You, M. Yasaee, S. He, D. Yang, Y. Xu, I. Dayyani, H. Ghasemnejad, S. Guo, P. Webb, J. Jennings, and G. Federico, “Identification of the key design inputs for the fem-based preliminary sizing and mass estimation of a civil aircraft wing box structure,” Aerospace Science and Technology, vol. 121, p. 107284, 2022. [Online]. Available: https://doi.org/10.1016/j.ast.2021.107284
A. Haider Bhutta, “Appropriate boundary condition for finite element analysis of structural members isolated from global model,” NED University Journal of Research, vol. 18, no. 3, pp. 61–75, 2021. [Online]. Available: https://doi.org/10.35453/NEDJR-STMECH-2021-0001
E. Narvydas, N. Puodziuniene, and T. A. khan, “Application of finite element sub-modeling techniques in structural mechanics,” Mechanika, vol. 27, no. 6, pp. 459–464, 2021. [Online]. Available: https://doi.org/10.5755/j02.mech.25962
J. Jang and S. Ahn, “Fe modeling methodology for load analysis and preliminary sizing of aircraft wing structure,” International Journal of Aviation, Aeronautics, and Aerospace, vol. 6, no. 2, 2019. [Online]. Available: https://doi.org/10.15394/ijaaa.2019.1301
A. Mishra, S. Pal, G. Singh Malhi, and P. Singh, “Structural analysis of uav airframe by using fem techniques: A review,” International Journal of Advanced Science and Technology, vol. 29, pp. 195–204, 06 2020. [Online]. Available: https://is.gd/4NRfx9
S. Henclik and A. Maurin, “Determination of the stiffness matrix of flat springs for modeling of the boundary condition at a pipeline support,” Mechanical Systems and Signal Processing, vol. 123, pp. 102–116, 2019. [Online]. Available: https://doi.org/10.1016/j.ymssp.2018.12.047
M. d. C. Alves, F. N. Corrêa, J. R. M. de Sousa, and B. P. Jacob, “A coupled, global/local finite element methodology to evaluate the fatigue life of flexible risers attached to floating platforms for deepwater offshore oil production,” Mathematics, vol. 12, no. 8, 2024. [Online]. Available: https://doi.org/10.3390/math12081231
V. Karnozov, “China’s fighter aircraft detailed,” Defence Review Asia, vol. 13, no. 1, pp. 42–47, 2019. [Online]. Available: https://is.gd/dM2DHD
A. G. Manca and C. M. Pappalardo, “Topology optimization procedure of aircraft mechanical components based on computer-aided design, multibody dynamics, and finite element analysis,” in Advances in Design, Simulation and Manufacturing III, V. Ivanov, I. Pavlenko, O. Liaposhchenko, J. Machado, and M. Edl, Eds. Cham: Springer International Publishing, 2020, pp. 159–168. [Online]. Available: https://doi.org/10.1007/978-3-030-50491-5_16
A. Aabid, M. A. M. B. M. Zakuan, S. A. Khan, and Y. E. Ibrahim, “Structural analysis of three-dimensional wings using finite element method,” Aerospace Systems, vol. 5, no. 1, pp. 47–63, Mar 2022. [Online]. Available: https://doi.org/10.1007/s42401-021-00114-w
P. Wang, Y. Chen, R. Pei, C. Lian, K. Zhang, and Y. Zhou, “Buckling and post-buckling analysis of composite wing box under loads with torsion-bending coupling,” Thin-Walled Structures, vol. 193, p. 111266, 2023. [Online]. Available: https://doi.org/10.1016/j.tws.2023.111266
N. Yang, “Methodology of aircraft structural design optimisation,” International Journal of Computer Applications in Technology (IJCAT), vol. 70, no. 3, pp. 145–154, 2022. [Online]. Available: https://dx.doi.org/10.1504/IJCAT.2022.130874
A. Basutkar, K. Baruah, and S. K. Kudari, “Frequency analysis of aircraft wing using FEM,” in Recent Trends in Mechanical Engineering, G. S. V. L. Narasimham, A. V. Babu, S. S. Reddy, and R. Dhanasekaran, Eds. Singapore: Springer Singapore, 2020, pp. 527–533. [Online]. Available: https://doi.org/10.1007/978-981-15-1124-0_46
B. Ravi Kumar, “Investigation on buckling response of the aircraft’s wing using finite-element method,” Australian Journal of Mechanical Engineering, vol. 18, no. sup1, pp. S122–S131, 2020. [Online]. Available: https://doi.org/10.2514/1.C034818
S. De, M. Jrad, and R. K. Kapania, “Structural optimization of internal structure of aircraft wings with curvilinear spars and ribs,” Journal of Aircraft, vol. 56, no. 2, pp. 707–718, 2019. [Online]. Available: https://doi.org/10.2514/1.C034818