Optimización de la integridad estructural de las estaciones de ala de aeronaves de combate: un enfoque de análisis de elementos finitos

Contenido principal del artículo

Aun Haider Bhutta

Resumen

Los aviones de combate modernos están equipados con múltiples estaciones en el fuselaje y debajo de las alas para acomodar varios almacenes externos, tanto descartables como no descartables. Cada configuración se somete a una certificación de aeronavegabilidad, incluido un análisis estructural de las estaciones individuales dentro de la envolvente de vuelo del transporte. Este estudio se centra en el análisis estructural de una estación de ala de un avión de combate dentro de esta envolvente especificada.Para realizar este análisis, la estación del ala se extrae del modelo global integral del ala, creando un submodelo con propiedades de rigidez equivalentes. Utilizando ANSYS Workbench®, se realiza un análisis de elementos finitos (FEA) para casos de carga críticos para determinar el factor de seguridad (FoS). El análisis inicial revela que la estación del ala tiene un FoS de 1,2 bajo la carga máxima de diseño. Los análisis modales y de pandeo pretensados indican un aumento del 10 % en la rigidez debido a los efectos de rigidez por tensión. Para mejorar aún más la capacidad de carga, se introducen cambios de diseño paramétrico. El cambio del diámetro del perno de 8 mm a 10 mm incrementa el FoS a 1,33, lo que da como resultado un aumento del 8 % en la capacidad máxima de carga de la estación del ala. Este enfoque integral, que emplea FEA, garantiza la integridad estructural del ala bajo condiciones de carga estática dentro de la envolvente del carro. Los hallazgos del estudio respaldan el rendimiento mejorado de la estación del ala y contribuyen a operaciones de aeronaves más seguras y eficientes.

Detalles del artículo

Sección
Artículo Científico

Referencias

K. Sinha, T. Klimmek, M. Schulze, and V. Handojo, “Loads analysis and structural optimization of a high aspect ratio, composite wing aircraft,” CEAS Aeronautical Journal, vol. 12, no. 2, pp. 233–243, Apr 2021. [Online]. Available: https://doi.org/10.1007/s13272-021-00494-x

B. D. Upadhyay, S. S. Sonigra, and S. D. Daxini, “Numerical analysis perspective in structural shape optimization: A review post 2000,” Advances in Engineering Software, vol. 155, p. 102992, 2021. [Online]. Available: https://doi.org/10.1016/j.advengsoft.2021.102992

N. Zimmermann and P. H. Wang, “A review of failure modes and fracture analysis of aircraft composite materials,” Engineering Failure Analysis, vol. 115, p. 104692, 2020. [Online]. Available: https://doi.org/10.1016/j.engfailanal.2020.104692

R. L. Muhanna and S. Shahi, Uncertainty in Boundary Conditions—An Interval Finite Element Approach. Cham: Springer International Publishing, 2020, pp. 157–167. [Online]. Available: https://doi.org/10.1007/978-3-030-40814-5_20

T. Martins, V. Infante, L. Sousa, A. Fonseca, P. Antunes, A. Moura, and B. Serrano, “Numerical and experimental study of aircraft structural health,” International Journal of Fatigue, vol. 132, p. 105348, 2020. [Online]. Available: https://doi.org/10.1016/j.ijfatigue.2019.105348

J. Lim, C. You, and I. Dayyani, “Multi-objective topology optimization and structural analysis of periodic spaceframe structures,” Materials & Design, vol. 190, p. 108552, 2020. [Online]. Available: https://doi.org/10.1016/j.matdes.2020.108552

C. Touzé, A. Vizzaccaro, and O. Thomas, “Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques,” Nonlinear Dynamics, vol. 105, no. 2, pp. 1141–1190, Jul 2021. [Online]. Available: https://doi.org/10.1007/s11071-021-06693-9

C. You, M. Yasaee, S. He, D. Yang, Y. Xu, I. Dayyani, H. Ghasemnejad, S. Guo, P. Webb, J. Jennings, and G. Federico, “Identification of the key design inputs for the fem-based preliminary sizing and mass estimation of a civil aircraft wing box structure,” Aerospace Science and Technology, vol. 121, p. 107284, 2022. [Online]. Available: https://doi.org/10.1016/j.ast.2021.107284

A. Haider Bhutta, “Appropriate boundary condition for finite element analysis of structural members isolated from global model,” NED University Journal of Research, vol. 18, no. 3, pp. 61–75, 2021. [Online]. Available: https://doi.org/10.35453/NEDJR-STMECH-2021-0001

E. Narvydas, N. Puodziuniene, and T. A. khan, “Application of finite element sub-modeling techniques in structural mechanics,” Mechanika, vol. 27, no. 6, pp. 459–464, 2021. [Online]. Available: https://doi.org/10.5755/j02.mech.25962

J. Jang and S. Ahn, “Fe modeling methodology for load analysis and preliminary sizing of aircraft wing structure,” International Journal of Aviation, Aeronautics, and Aerospace, vol. 6, no. 2, 2019. [Online]. Available: https://doi.org/10.15394/ijaaa.2019.1301

A. Mishra, S. Pal, G. Singh Malhi, and P. Singh, “Structural analysis of uav airframe by using fem techniques: A review,” International Journal of Advanced Science and Technology, vol. 29, pp. 195–204, 06 2020. [Online]. Available: https://is.gd/4NRfx9

S. Henclik and A. Maurin, “Determination of the stiffness matrix of flat springs for modeling of the boundary condition at a pipeline support,” Mechanical Systems and Signal Processing, vol. 123, pp. 102–116, 2019. [Online]. Available: https://doi.org/10.1016/j.ymssp.2018.12.047

M. d. C. Alves, F. N. Corrêa, J. R. M. de Sousa, and B. P. Jacob, “A coupled, global/local finite element methodology to evaluate the fatigue life of flexible risers attached to floating platforms for deepwater offshore oil production,” Mathematics, vol. 12, no. 8, 2024. [Online]. Available: https://doi.org/10.3390/math12081231

V. Karnozov, “China’s fighter aircraft detailed,” Defence Review Asia, vol. 13, no. 1, pp. 42–47, 2019. [Online]. Available: https://is.gd/dM2DHD

A. G. Manca and C. M. Pappalardo, “Topology optimization procedure of aircraft mechanical components based on computer-aided design, multibody dynamics, and finite element analysis,” in Advances in Design, Simulation and Manufacturing III, V. Ivanov, I. Pavlenko, O. Liaposhchenko, J. Machado, and M. Edl, Eds. Cham: Springer International Publishing, 2020, pp. 159–168. [Online]. Available: https://doi.org/10.1007/978-3-030-50491-5_16

A. Aabid, M. A. M. B. M. Zakuan, S. A. Khan, and Y. E. Ibrahim, “Structural analysis of three-dimensional wings using finite element method,” Aerospace Systems, vol. 5, no. 1, pp. 47–63, Mar 2022. [Online]. Available: https://doi.org/10.1007/s42401-021-00114-w

P. Wang, Y. Chen, R. Pei, C. Lian, K. Zhang, and Y. Zhou, “Buckling and post-buckling analysis of composite wing box under loads with torsion-bending coupling,” Thin-Walled Structures, vol. 193, p. 111266, 2023. [Online]. Available: https://doi.org/10.1016/j.tws.2023.111266

N. Yang, “Methodology of aircraft structural design optimisation,” International Journal of Computer Applications in Technology (IJCAT), vol. 70, no. 3, pp. 145–154, 2022. [Online]. Available: https://dx.doi.org/10.1504/IJCAT.2022.130874

A. Basutkar, K. Baruah, and S. K. Kudari, “Frequency analysis of aircraft wing using FEM,” in Recent Trends in Mechanical Engineering, G. S. V. L. Narasimham, A. V. Babu, S. S. Reddy, and R. Dhanasekaran, Eds. Singapore: Springer Singapore, 2020, pp. 527–533. [Online]. Available: https://doi.org/10.1007/978-981-15-1124-0_46

B. Ravi Kumar, “Investigation on buckling response of the aircraft’s wing using finite-element method,” Australian Journal of Mechanical Engineering, vol. 18, no. sup1, pp. S122–S131, 2020. [Online]. Available: https://doi.org/10.2514/1.C034818

S. De, M. Jrad, and R. K. Kapania, “Structural optimization of internal structure of aircraft wings with curvilinear spars and ribs,” Journal of Aircraft, vol. 56, no. 2, pp. 707–718, 2019. [Online]. Available: https://doi.org/10.2514/1.C034818