Arquitectura de IoT para el Monitoreo de Emisiones de Gases Contaminantes de Vehículos y su Validación a través de Machine Learning
Contenido principal del artículo
Resumen
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La Universidad Politécnica Salesiana de Ecuador conserva los derechos patrimoniales (copyright) de las obras publicadas y favorecerá la reutilización de las mismas. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento / No Comercial-Sin Obra Derivada 4.0 Ecuador: se pueden copiar, usar, difundir, transmitir y exponer públicamente.
El autor/es abajo firmante transfiere parcialmente los derechos de propiedad (copyright) del presente trabajo a la Universidad Politécnica Salesiana del Ecuador, para las ediciones impresas.
Se declara además haber respetado los principios éticos de investigación y estar libre de cualquier conflicto de intereses.
El autor/es certifican que este trabajo no ha sido publicado, ni está en vías de consideración para su publicación en ninguna otra revista u obra editorial.
El autor/es se responsabilizan de su contenido y de haber contribuido a la concepción, diseño y realización del trabajo, análisis e interpretación de datos, y de haber participado en la redacción del texto y sus revisiones, así como en la aprobación de la versión que finalmente se remite en adjunto.
Referencias
J. Krause, C. Thiel, D. Tsokolis, Z. Samaras, C. Rota, A. Ward, P. Prenninger, T. Coosemans, S. Neugebauer, and W. Verhoeve, “EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios,” Energy Policy, vol. 138, p. 111224, 2020. [Online]. Available: https://doi.org/10.1016/j.enpol.2019.111224
M. M. Ajmal, M. Khan, M. K. Shad, H. AlKatheeri, and F. Jabeen, “Empirical examination of societal, financial and
technology-related challenges amid COVID-19 in service supply chains: evidence from emerging market,” The International Journal of Logistics Management, vol. 34, no. 4, pp. 994–1019, Jan 2023. [Online]. Available: https://doi.org/10.1108/IJLM-04-2021-0220
J. Lynn and N. Peeva, “Communications in the IPCC’s Sixth Assessment Report cycle,” Climatic Change, vol. 169,
no. 1, p. 18, Nov 2021. [Online]. Available: https://doi.org/10.1007/s10584-021-03233-7
Z. Yang and A. Bandivadekar, Light-duty vehicle greenhouse gas and fuel economy standards. The International Council on clean Transportation, 2017. [Online]. Available: https://bit.ly/4anzh8u
R. Guensler, “Data needs for evolving motor vehicle emission modeling approaches,” The University of California, Transportation Center, 1993. [Online]. Available: https://bit.ly/3THURO5
Y. Lu, Traffic-Related PM2. 5 Air Pollution and Schools in Proximity to Major Roadways in Shanghai, China. University of Washington, Department of Urban Design and Planning, 2016. [Online]. Available: https://bit.ly/43KjOgq
N. Kozarev and N. Ilieva, “Plume rise in particular meteorological conditions,” Journal of the University of Chemical Technology and Metallurgy, vol. 46, pp. 305–308, 01 2011. [Online]. Available: https://bit.ly/3VLqMQ3
N. Barmparesos, V. D. Assimakopoulos, M. N. Assimakopoulos, and E. Tsairidi, “Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground metro,” AIMS Environmental Science, vol. 3, no. 2, pp. 199–219, 2016. [Online]. Available: https://doi.org/10.3934/environsci.2016.2.199
R. Senthilkumar, P. Venkatakrishnan, and N. Balaji, “Intelligent based novel embedded system based iot enabled air pollution monitoring system,” Microprocessors and Microsystems, vol. 77, p. 103172, 2020. [Online]. Available: https://doi.org/10.1016/j.micpro.2020.103172
L. Moses, Tamilselvan, Raju, and Karthikeyan, “IoT enabled Environmental Air Pollution Monitoring and Rerouting system using Machine learning algorithms,” IOP Conference Series: Materials Science and Engineering, vol. 955, no. 1, p. 012005, nov 2020. [Online]. Available: https://dx.doi.org/10.1088/1757-899X/955/1/012005
V. Behal and R. Singh, “Personalised healthcare model for monitoring and prediction of airpollution: machine learning approach,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 33, no. 3, pp. 425–449, 2021. [Online]. Available: https://doi.org/10.1080/0952813X.2020.1744197
C. Shetty, B. Sowmya, S. Seema, and K. Srinivasa, “Chapter eight - air pollution control model using machine learning and iot techniques,” in The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases, ser. Advances in Computers, P. Raj and P. Evangeline, Eds. Elsevier, 2020, vol. 17, no. 1, pp. 187–218. [Online]. Available: https://doi.org/10.1016/bs.adcom.2019.10.006
“Guest Editorial: Special Section on Integration of Big Data and Artificial Intelligence for Internet of Things,” IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2562–2565, 2020. [Online]. Available: https://doi.org/10.1109/TII.2019.2958638
R. Mumtaz, S. M. H. Zaidi, M. Z. Shakir, U. Shafi, M. M. Malik, A. Haque, S. Mumtaz, and S. A. R. Zaidi, “Internet of Things (IoT) Based Indoor Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective,” Electronics, vol. 10, no. 2, 2021. [Online]. Available: https://doi.org/10.3390/electronics10020184
M. Abdel-Basset, G. Manogaran, M. Mohamed, and E. Rushdy, “Internet of things in smart education environment: Supportive framework in the decision-making process,” Concurrency and Computation: Practice and Experience, vol. 31, no. 10, p. e4515, 2019. [Online]. Available: https://doi.org/10.1002/cpe.4515
J. González-Escarabay, M. Montaño Blacio, O. Jiménez-Sarango, L. Mingo-Morocho, and C. Carrión-Aguirre, “Design and deployment of an iot-based monitoring system for hydroponic crops,” Ingenius. Revista de Ciencia y Tecnología, no. 30, pp. 9–18, 2023. [Online]. Available: https://doi.org/10.17163/ings.n30.2023.01
M. M. Blacio, V. G. Santos, D. J. Chamba, W. T. Guin, and L. C. Jiménez, “Empowering Low-Power Wide-Area Networks: Unlocking the Potential of Sigfox in Local Transmission,” in Advanced Research in Technologies, Information, Innovation and Sustainability, T. Guarda, F. Portela, and J. M. Diaz-Nafria, Eds. Cham: Springer Nature Switzerland, 2024, pp. 417–429. [Online]. Available: https://doi.org/10.1007/978-3-031-48930-3_32
J. K. Segura Gómez, Prototipo de un sistema IoT para medición de gases de efecto invernadero. Universidad Santo Tomás. Colombia, 2021. [Online]. Available: https://bit.ly/3J4OvDl
kaggle. (2020) Co2 emission by vehicles. kaggle. [Online]. Available: https://bit.ly/3J7Navw