Arquitectura de IoT para el Monitoreo de Emisiones de Gases Contaminantes de Vehículos y su Validación a través de Machine Learning

Contenido principal del artículo

Washington Torres Guin
José Sánchez Aquino
Samuel Bustos Gaibor
Marjorie Coronel Suarez

Resumen

Este estudio propone una arquitectura IoT para el monitoreo de emisiones de gases contaminantes en vehículos, en respuesta a la creciente preocupación por la contaminación del aire y el calentamiento global. La arquitectura se basa en un nodo equipado con sensores DHT22, MQ9 y MQ135 para capturar la temperatura, humedad y emisiones de gases, mismo que se comunica de manera efectiva a través de la red LTE para enviar los datos a la plataforma ThingSpeak. Se lleva a cabo un análisis de los niveles de contaminación de CO2, CO y CH4 mediante los datos recopilados. Estos datos se validan mediante la revisión técnica de un vehículo de prueba. Posterior, se entrena una red neural artificial (ANN) utilizando una base de datos específica de emisiones de CO2 de vehículos en Canadá, como resultado se obtiene un R2 alto de 99.2% y los valores de RMSE y MSE bajos, esto indican que el modelo está haciendo predicciones precisas y se ajusta bien a los datos de entrenamiento. La ANN tiene como objetivo predecir las emisiones de CO2 y verificar los datos de CO2 provenientes de la red IoT. La arquitectura demuestra su capacidad para el monitoreo en tiempo real y su potencial para contribuir a la reducción de la contaminación. 

Detalles del artículo

Sección
Artículo Científico

Referencias

J. Krause, C. Thiel, D. Tsokolis, Z. Samaras, C. Rota, A. Ward, P. Prenninger, T. Coosemans, S. Neugebauer, and W. Verhoeve, “EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios,” Energy Policy, vol. 138, p. 111224, 2020. [Online]. Available: https://doi.org/10.1016/j.enpol.2019.111224

M. M. Ajmal, M. Khan, M. K. Shad, H. AlKatheeri, and F. Jabeen, “Empirical examination of societal, financial and

technology-related challenges amid COVID-19 in service supply chains: evidence from emerging market,” The International Journal of Logistics Management, vol. 34, no. 4, pp. 994–1019, Jan 2023. [Online]. Available: https://doi.org/10.1108/IJLM-04-2021-0220

J. Lynn and N. Peeva, “Communications in the IPCC’s Sixth Assessment Report cycle,” Climatic Change, vol. 169,

no. 1, p. 18, Nov 2021. [Online]. Available: https://doi.org/10.1007/s10584-021-03233-7

Z. Yang and A. Bandivadekar, Light-duty vehicle greenhouse gas and fuel economy standards. The International Council on clean Transportation, 2017. [Online]. Available: https://bit.ly/4anzh8u

R. Guensler, “Data needs for evolving motor vehicle emission modeling approaches,” The University of California, Transportation Center, 1993. [Online]. Available: https://bit.ly/3THURO5

Y. Lu, Traffic-Related PM2. 5 Air Pollution and Schools in Proximity to Major Roadways in Shanghai, China. University of Washington, Department of Urban Design and Planning, 2016. [Online]. Available: https://bit.ly/43KjOgq

N. Kozarev and N. Ilieva, “Plume rise in particular meteorological conditions,” Journal of the University of Chemical Technology and Metallurgy, vol. 46, pp. 305–308, 01 2011. [Online]. Available: https://bit.ly/3VLqMQ3

N. Barmparesos, V. D. Assimakopoulos, M. N. Assimakopoulos, and E. Tsairidi, “Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground metro,” AIMS Environmental Science, vol. 3, no. 2, pp. 199–219, 2016. [Online]. Available: https://doi.org/10.3934/environsci.2016.2.199

R. Senthilkumar, P. Venkatakrishnan, and N. Balaji, “Intelligent based novel embedded system based iot enabled air pollution monitoring system,” Microprocessors and Microsystems, vol. 77, p. 103172, 2020. [Online]. Available: https://doi.org/10.1016/j.micpro.2020.103172

L. Moses, Tamilselvan, Raju, and Karthikeyan, “IoT enabled Environmental Air Pollution Monitoring and Rerouting system using Machine learning algorithms,” IOP Conference Series: Materials Science and Engineering, vol. 955, no. 1, p. 012005, nov 2020. [Online]. Available: https://dx.doi.org/10.1088/1757-899X/955/1/012005

V. Behal and R. Singh, “Personalised healthcare model for monitoring and prediction of airpollution: machine learning approach,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 33, no. 3, pp. 425–449, 2021. [Online]. Available: https://doi.org/10.1080/0952813X.2020.1744197

C. Shetty, B. Sowmya, S. Seema, and K. Srinivasa, “Chapter eight - air pollution control model using machine learning and iot techniques,” in The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases, ser. Advances in Computers, P. Raj and P. Evangeline, Eds. Elsevier, 2020, vol. 17, no. 1, pp. 187–218. [Online]. Available: https://doi.org/10.1016/bs.adcom.2019.10.006

“Guest Editorial: Special Section on Integration of Big Data and Artificial Intelligence for Internet of Things,” IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2562–2565, 2020. [Online]. Available: https://doi.org/10.1109/TII.2019.2958638

R. Mumtaz, S. M. H. Zaidi, M. Z. Shakir, U. Shafi, M. M. Malik, A. Haque, S. Mumtaz, and S. A. R. Zaidi, “Internet of Things (IoT) Based Indoor Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective,” Electronics, vol. 10, no. 2, 2021. [Online]. Available: https://doi.org/10.3390/electronics10020184

M. Abdel-Basset, G. Manogaran, M. Mohamed, and E. Rushdy, “Internet of things in smart education environment: Supportive framework in the decision-making process,” Concurrency and Computation: Practice and Experience, vol. 31, no. 10, p. e4515, 2019. [Online]. Available: https://doi.org/10.1002/cpe.4515

J. González-Escarabay, M. Montaño Blacio, O. Jiménez-Sarango, L. Mingo-Morocho, and C. Carrión-Aguirre, “Design and deployment of an iot-based monitoring system for hydroponic crops,” Ingenius. Revista de Ciencia y Tecnología, no. 30, pp. 9–18, 2023. [Online]. Available: https://doi.org/10.17163/ings.n30.2023.01

M. M. Blacio, V. G. Santos, D. J. Chamba, W. T. Guin, and L. C. Jiménez, “Empowering Low-Power Wide-Area Networks: Unlocking the Potential of Sigfox in Local Transmission,” in Advanced Research in Technologies, Information, Innovation and Sustainability, T. Guarda, F. Portela, and J. M. Diaz-Nafria, Eds. Cham: Springer Nature Switzerland, 2024, pp. 417–429. [Online]. Available: https://doi.org/10.1007/978-3-031-48930-3_32

J. K. Segura Gómez, Prototipo de un sistema IoT para medición de gases de efecto invernadero. Universidad Santo Tomás. Colombia, 2021. [Online]. Available: https://bit.ly/3J4OvDl

kaggle. (2020) Co2 emission by vehicles. kaggle. [Online]. Available: https://bit.ly/3J7Navw