Predicción de desgaste abrasivo y dureza superficial de partes impresas por tecnología SLA

Contenido principal del artículo

Resumen

En el presente estudio se realizó una predicción del deterioro de la dureza y el desgaste abrasivo a través de una red neuronal utilizando inteligencia artificial sobre un material impreso en SLA. Esta investigación tiene como objetivo predecir las propiedades mecánicas de resistencia al desgaste y dureza superficial de piezas fabricadas mediante impresión por estereolitografía (SLA). Para realizar los experimentos se utilizó un diseño factorial de dos niveles o DOE factorial completo y así asociar los parámetros peculiares (orientación de impresión, tiempo de curado, altura de la capa). Las propiedades mecánicas fueron evaluadas según normativas ASTM, con el objetivo de obtener datos de alimentación y validación de las predicciones del índice de desgaste Taber y la dureza empleando una red neuronal artificial. Los resultados experimentales concuerdan con los datos medidos con errores de predicción satisfactorios con un error cuadrático medio (MSE) de 0,01 correspondiente al desgaste abrasivo utilizando la resina transparente y un error absoluto medio (MSE) de 0,09 con un R2 de 0,76. La predicción con la red neuronal tiene un error cuadrático medio (MSE) de 2.47 perteneciente al desgaste abrasivo utilizando la resina resistente y un error absoluto medio (MSE) de 14,3 con un R2 de 0,97. Se demostró que la precisión de la predicción es razonable, y que la red tiene potencial para mejorar si se pudiera ampliar la base de datos experimental para entrenar la red. Por lo tanto, las propiedades mecánicas de desgaste y dureza se pueden predecir, adecuadamente, con una RNA.

Detalles del artículo

Sección
Manufactura Aditiva

Referencias

T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos. Part B Eng., vol. 143, pp. 172–196, Jun. 2018, doi: 10.1016/J.COMPOSITESB.2018.02.012.

A. Pérez, E. Romero, and A. González, “Three-dimensional printing in helthcare,” Rev. Mex. Ing. Biomédica, vol. 42, no. 2, pp. 32–48, 2021, doi: dx.doi.org/10.17488/RMIB.42.2.3.

T. Wohlers, “Rapid Prototyping & Tooling State of the Industry Annual Worldwide Progress Report Wohlers Report,” 2001. [Online]. Available: www.katzdesign.com,.

E. J. Hurst, “3D Printing in Healthcare: Emerging Applications,” J. Hosp. Librariansh., vol. 16, no. 3, pp. 255–267, Jul. 2016, doi: 10.1080/15323269.2016.1188042.

S. Mishra, “Application of 3D printing in medicine,” Indian Heart J., vol. 68, no. 1, pp. 108–109, Jan. 2016, doi: 10.1016/J.IHJ.2016.01.009.

J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater., vol. 32, no. 1, pp. 54–64, Jan. 2016, doi: 10.1016/J.DENTAL.2015.09.018.

A. C. Uzcategui, A. Muralidharan, V. L. Ferguson, S. J. Bryant, and R. R. McLeod, “Understanding and Improving Mechanical Properties in 3D printed Parts Using a Dual-Cure Acrylate-Based Resin for Stereolithography,” Adv. Eng. Mater., vol. 20, no. 12, pp. 1–10, 2018, doi: 10.1002/adem.201800876.

C. Mendes-Felipe, D. Patrocinio, J. M. Laza, L. Ruiz-Rubio, and J. L. Vilas-Vilela, “Evaluation of postcuring process on the thermal and mechanical properties of the Clear02TM resin used in stereolithography,” Polym. Test., vol. 72, pp. 115–121, 2018, doi: 10.1016/j.polymertesting.2018.10.018.

A. Bardelcik, S. Yang, F. Alderson, and A. Gadsden, “The effect of wash treatment on the mechanical properties and energy absorption potential of a 3D printed polymethyl methacrylate (PMMA),” Mater. Today Commun., vol. 26, no. May, p. 101728, 2021, doi: 10.1016/j.mtcomm.2020.101728.

Z. Jiang, Z. Zhang, and K. Friedrich, “Prediction on wear properties of polymer composites with artificial neural networks,” Compos. Sci. Technol., vol. 67, no. 2, pp. 168–176, 2007, doi: 10.1016/j.compscitech.2006.07.026.

A. Tura, H. Lemu, H. Mamo, and A. Santhosh, “Prediction of tensile strength in fused deposition modeling process using artificial neural network and fuzzy logic,” Prog. Addit. Manuf., 2022, doi: https://doi.org/10.1007/s40964-022-00346-y.

M. Tayyab, S. Ahmad, M. J. Akhtar, P. M. Sathikh, and R. M. Singari, “Prediction of mechanical properties for acrylonitrile-butadiene-styrene parts manufactured by fused deposition modelling using artificial neural network and genetic algorithm,” Int. J. Comput. Integr. Manuf., vol. 00, no. 00, pp. 1–18, 2022, doi: 10.1080/0951192X.2022.2104462.

U. S. Tewari, S. K. Sharma, and P. Vasudevan, Polymer tribology, vol. C29, no. 1. 1989.

B. Gupta, “3 - Friction and wear mechanism of polymers, their composites and nanocomposites,” Tribol. Polym. Polym. Compos. Polym. Nanocomposites, pp. 51–117, 2023, doi: https://doi.org/10.1016/B978-0-323-90748-4.00012-1.

E. O. Ezugwu, S. J. Arthur, and E. L. Hines, “Tool-wear prediction using artificial neural networks,” J. Mater. Process. Tech., vol. 49, no. 3–4, pp. 255–264, 1995, doi: 10.1016/0924-0136(94)01351-Z.

C. F. Pérez-Salinas, A. del Olmo, and L. N. López de Lacalle, “Estimation of Drag Finishing Abrasive Effect for Cutting Edge Preparation in Broaching Tool,” Materials (Basel)., vol. 15, no. 15, 2022, doi: 10.3390/ma15155135.

G. Radhakrishnan, C. Kesavan, V. Ramesh, and T. Anandan, “Application of artificial neural network (ANN) for predicting the wear behaviour of Al 2219-SiCp composite,” in Applied Mechanics and Materials, Trans Tech., vol. 852, 2016, pp. 397–401.

B. A. Shuvho, M. A. Chowdhury, and U. K. Debnath, “Analysis of Artificial Neural Network for Predicting Erosive Wear of Nylon-12 Polymer,” vol. 8, no. 1, 2019, doi: 10.1520/MPC20180164.

A. M and C. D, “Journal De Physique. IV: JP - Preface,” J. Phys. IV JP, vol. 11, no. 8, p. 1, 2001.

FormLabs, “Tough Tough Resin for Rugged Prototyping,” 2018.

FormLabs, “Standard Materials for High-Resolution Rapid Prototyping,” 2017.

B. Sen-Crowe, M. Sutherland, M. McKenney, and A. Elkbuli, “A Closer Look Into Global Hospital Beds Capacity and Resource Shortages During the COVID-19 Pandemic,” J. Surg. Res., vol. 260, pp. 56–63, 2021, doi: 10.1016/j.jss.2020.11.062.

S. V, “4 - Material Requirements for Plastics Used in Medical Devices,” Plast. Med. Devices, pp. 66–112, 2022, doi: https://doi.org/10.1016/B978-0-323-85126-8.00008-4.

P. Jacobs, “Fundamentals of Stereolithography,” 3D Syst. Inc., 1992.

J. H. Lee, R. K. Prud’homme, and I. A. Aksay, “Cure depth in photopolymerization: Experiments and theory,” Mater. Res. Soc., vol. 16, 2001.

A. El-Aziz, D. Saber, and A. Megahed, “Investigation and Prediction of Abrasive Wear Rate of Heat-Treated HCCIs with Different Cr/C Ratios Using Artificial Neural Networks,” Int. J. Met., vol. 15, no. 4, pp. 1149–1163, 2021, doi: https://doi.org/10.1007/s40962-020-00547-7.

A. Sagbas, F. Kahraman, and U. Esme, “Modeling and predicting abrasive wear behaviour of poly oxy methylenes using response surface methodolgy and neural Networks,” Metalurgija, vol. 48, no. 2, pp. 117–120, 2009.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder–decoder approaches,” Proc. SSST 2014 - 8th Work. Syntax. Semant. Struct. Stat. Transl., pp. 103–111, 2014, doi: 10.3115/v1/w14-4012.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still) requires rethinking generalization,” Commun. ACM, vol. 64, no. 3, pp. 107–115, 2021, doi: 10.1145/3446776.

Y. Zeng, K. Jiang, and J. Chen, “Automatic seismic salt interpretation with deep convolutional neural networks,” Proc. 2019 3rd Int. Conf. Inf. Syst. data Min., pp. 16–20, 2019.

M. Hawryluk and B. Mrzyglod, “A system of analysis and prediction of the loss of forging tool material applying artificial neural networks,” J. Min. Metall. Sect. B Metall., vol. 54, no. 3, pp. 323–337, 2018, doi: 10.2298/JMMB180417023H.

S. Sardar, S. Dey, and D. Das, “Modelling of tribological responses of composites using integrated ANN-GA technique,” J. Compos. Mater., vol. 55, no. 7, pp. 873–896, 2021, doi: https://doi.org/10.1177/0021998320960520.