Prediction of abrasive wear and surface hardness of printed parts by SLA technology
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 4.0 Ecuador license: they can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to the Universidad Politécnica Salesiana of Ecuador for printed editions.
It is also stated that they have respected the ethical principles of research and are free from any conflict of interest. The author(s) certify that this work has not been published, nor is it under consideration for publication in any other journal or editorial work.
The author (s) are responsible for their content and have contributed to the conception, design and completion of the work, analysis and interpretation of data, and to have participated in the writing of the text and its revisions, as well as in the approval of the version which is finally referred to as an attachment.
References
T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos. Part B Eng., vol. 143, pp. 172–196, Jun. 2018, doi: 10.1016/J.COMPOSITESB.2018.02.012.
A. Pérez, E. Romero, and A. González, “Three-dimensional printing in helthcare,” Rev. Mex. Ing. Biomédica, vol. 42, no. 2, pp. 32–48, 2021, doi: dx.doi.org/10.17488/RMIB.42.2.3.
T. Wohlers, “Rapid Prototyping & Tooling State of the Industry Annual Worldwide Progress Report Wohlers Report,” 2001. [Online]. Available: www.katzdesign.com,.
E. J. Hurst, “3D Printing in Healthcare: Emerging Applications,” J. Hosp. Librariansh., vol. 16, no. 3, pp. 255–267, Jul. 2016, doi: 10.1080/15323269.2016.1188042.
S. Mishra, “Application of 3D printing in medicine,” Indian Heart J., vol. 68, no. 1, pp. 108–109, Jan. 2016, doi: 10.1016/J.IHJ.2016.01.009.
J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater., vol. 32, no. 1, pp. 54–64, Jan. 2016, doi: 10.1016/J.DENTAL.2015.09.018.
A. C. Uzcategui, A. Muralidharan, V. L. Ferguson, S. J. Bryant, and R. R. McLeod, “Understanding and Improving Mechanical Properties in 3D printed Parts Using a Dual-Cure Acrylate-Based Resin for Stereolithography,” Adv. Eng. Mater., vol. 20, no. 12, pp. 1–10, 2018, doi: 10.1002/adem.201800876.
C. Mendes-Felipe, D. Patrocinio, J. M. Laza, L. Ruiz-Rubio, and J. L. Vilas-Vilela, “Evaluation of postcuring process on the thermal and mechanical properties of the Clear02TM resin used in stereolithography,” Polym. Test., vol. 72, pp. 115–121, 2018, doi: 10.1016/j.polymertesting.2018.10.018.
A. Bardelcik, S. Yang, F. Alderson, and A. Gadsden, “The effect of wash treatment on the mechanical properties and energy absorption potential of a 3D printed polymethyl methacrylate (PMMA),” Mater. Today Commun., vol. 26, no. May, p. 101728, 2021, doi: 10.1016/j.mtcomm.2020.101728.
Z. Jiang, Z. Zhang, and K. Friedrich, “Prediction on wear properties of polymer composites with artificial neural networks,” Compos. Sci. Technol., vol. 67, no. 2, pp. 168–176, 2007, doi: 10.1016/j.compscitech.2006.07.026.
A. Tura, H. Lemu, H. Mamo, and A. Santhosh, “Prediction of tensile strength in fused deposition modeling process using artificial neural network and fuzzy logic,” Prog. Addit. Manuf., 2022, doi: https://doi.org/10.1007/s40964-022-00346-y.
M. Tayyab, S. Ahmad, M. J. Akhtar, P. M. Sathikh, and R. M. Singari, “Prediction of mechanical properties for acrylonitrile-butadiene-styrene parts manufactured by fused deposition modelling using artificial neural network and genetic algorithm,” Int. J. Comput. Integr. Manuf., vol. 00, no. 00, pp. 1–18, 2022, doi: 10.1080/0951192X.2022.2104462.
U. S. Tewari, S. K. Sharma, and P. Vasudevan, Polymer tribology, vol. C29, no. 1. 1989.
B. Gupta, “3 - Friction and wear mechanism of polymers, their composites and nanocomposites,” Tribol. Polym. Polym. Compos. Polym. Nanocomposites, pp. 51–117, 2023, doi: https://doi.org/10.1016/B978-0-323-90748-4.00012-1.
E. O. Ezugwu, S. J. Arthur, and E. L. Hines, “Tool-wear prediction using artificial neural networks,” J. Mater. Process. Tech., vol. 49, no. 3–4, pp. 255–264, 1995, doi: 10.1016/0924-0136(94)01351-Z.
C. F. Pérez-Salinas, A. del Olmo, and L. N. López de Lacalle, “Estimation of Drag Finishing Abrasive Effect for Cutting Edge Preparation in Broaching Tool,” Materials (Basel)., vol. 15, no. 15, 2022, doi: 10.3390/ma15155135.
G. Radhakrishnan, C. Kesavan, V. Ramesh, and T. Anandan, “Application of artificial neural network (ANN) for predicting the wear behaviour of Al 2219-SiCp composite,” in Applied Mechanics and Materials, Trans Tech., vol. 852, 2016, pp. 397–401.
B. A. Shuvho, M. A. Chowdhury, and U. K. Debnath, “Analysis of Artificial Neural Network for Predicting Erosive Wear of Nylon-12 Polymer,” vol. 8, no. 1, 2019, doi: 10.1520/MPC20180164.
A. M and C. D, “Journal De Physique. IV: JP - Preface,” J. Phys. IV JP, vol. 11, no. 8, p. 1, 2001.
FormLabs, “Tough Tough Resin for Rugged Prototyping,” 2018.
FormLabs, “Standard Materials for High-Resolution Rapid Prototyping,” 2017.
B. Sen-Crowe, M. Sutherland, M. McKenney, and A. Elkbuli, “A Closer Look Into Global Hospital Beds Capacity and Resource Shortages During the COVID-19 Pandemic,” J. Surg. Res., vol. 260, pp. 56–63, 2021, doi: 10.1016/j.jss.2020.11.062.
S. V, “4 - Material Requirements for Plastics Used in Medical Devices,” Plast. Med. Devices, pp. 66–112, 2022, doi: https://doi.org/10.1016/B978-0-323-85126-8.00008-4.
P. Jacobs, “Fundamentals of Stereolithography,” 3D Syst. Inc., 1992.
J. H. Lee, R. K. Prud’homme, and I. A. Aksay, “Cure depth in photopolymerization: Experiments and theory,” Mater. Res. Soc., vol. 16, 2001.
A. El-Aziz, D. Saber, and A. Megahed, “Investigation and Prediction of Abrasive Wear Rate of Heat-Treated HCCIs with Different Cr/C Ratios Using Artificial Neural Networks,” Int. J. Met., vol. 15, no. 4, pp. 1149–1163, 2021, doi: https://doi.org/10.1007/s40962-020-00547-7.
A. Sagbas, F. Kahraman, and U. Esme, “Modeling and predicting abrasive wear behaviour of poly oxy methylenes using response surface methodolgy and neural Networks,” Metalurgija, vol. 48, no. 2, pp. 117–120, 2009.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.
K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder–decoder approaches,” Proc. SSST 2014 - 8th Work. Syntax. Semant. Struct. Stat. Transl., pp. 103–111, 2014, doi: 10.3115/v1/w14-4012.
C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still) requires rethinking generalization,” Commun. ACM, vol. 64, no. 3, pp. 107–115, 2021, doi: 10.1145/3446776.
Y. Zeng, K. Jiang, and J. Chen, “Automatic seismic salt interpretation with deep convolutional neural networks,” Proc. 2019 3rd Int. Conf. Inf. Syst. data Min., pp. 16–20, 2019.
M. Hawryluk and B. Mrzyglod, “A system of analysis and prediction of the loss of forging tool material applying artificial neural networks,” J. Min. Metall. Sect. B Metall., vol. 54, no. 3, pp. 323–337, 2018, doi: 10.2298/JMMB180417023H.
S. Sardar, S. Dey, and D. Das, “Modelling of tribological responses of composites using integrated ANN-GA technique,” J. Compos. Mater., vol. 55, no. 7, pp. 873–896, 2021, doi: https://doi.org/10.1177/0021998320960520.