Características de lluvia y eventos extremos en los Andes Tropicales usando un radar de lluvia de Apuntamiento Vertical
Contenido principal del artículo
Resumen
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 3.0 Ecuador license: works can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to Universidad Politécnica Salesiana of Ecuador for the printed edition.
Referencias
Atlas, D., Srivastava, R., and Sekhon, R. (1973). Doppler radar characteristics of precipitation at vertical incidence. Reviews of Geophysics, 11(1):1–35. Online: https://n9.cl/8t5da7.
Barlow, M., Gutowski, W., Gyakum, J., Katz, R., Lim, Y., Schumacher, R., Wehner, M., Agel, L., Bosilovich, M., Collow, A., Gershunov, A., Grotjahn, R., Leung, R., Milrad, S., and Min, S. (2019). North american extreme precipitation events and related large-scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Climate Dynamics, 53:6835–6875. Online: https://n9.cl/jovyd.
Bendix, J., Rollenbeck, R., and Reudenbach, C. (2006). Diurnal patterns of rainfall in a tropical andean valley of southern ecuador as seen by a vertically pointing k-band doppler radar. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26(6):829–846. Online: https://n9.cl/57h73.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V., Kondo, Y., Liao, H., and Lohmann, U. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, chapter Clouds and aerosols, pages 571–657. Cambridge University Press.
Campozano, L., Célleri, R., Trachte, K., Bendix, J., and Samaniego, E. (2016). Rainfall and cloud dynamics in the andes: A southern ecuador case study. Advances in Meteorology, 2016(1):3192765. Online: https://n9.cl/6c7l1.
Cha, J. W., Chang, K. H., Yum, S., and Choi, Y. J. (2009). Comparison of the bright band characteristics measured by micro rain radar (mrr) at a mountain and a coastal site in south korea. Advances in Atmospheric Sciences, 26:211–221. Online: https://n9.cl/4214z.
Chen, M., Huang, Y., Li, Z., Larico, A., Xue, M.,Hong, Y., Hu, X., Novoa, H., Martin, E., McPherson, R., Zhang, J., Gao, S., Wen, Y., Perez, A., and Morales, I. (2022). Cross-examining precipitation products by rain gauge, remote sensing, and wrf simulations over a south american region across the pacific coast and andes. Atmosphere, 13(10):1666. Online: https://n9.cl/xfegq.
Das, S. and Maitra, A. (2016). Vertical profile of rain: Ka band radar observations at tropical locations. Journal of Hydrology, 534:31–41. Online: https://n9.cl/ldgsx.
Durán-Alarcón, C., Boudevillain, B.and Genthon, C., Grazioli, J., Souverijns, N., van Lipzig, N., Gorodetskaya, I., and Berne, A. (2019). The vertical structure of precipitation at two stations in east antarctica derived from micro rain radars. The Cryosphere, 13(1):247–264. Online: https://n9.cl/5c4zcy.
Endries, J., Perry, L., Yuter, S., Seimon, A., AndradeFlores, M., Winkelmann, R., Quispe, N., Rado, M., Montoya, N., and Velarde, F. (2018). Radarobserved characteristics of precipitation in the tropical high andes of southern peru and bolivia. Journal of Applied Meteorology and Climatology, 57(7):1441–1458. Online: https://n9.cl/69im8.
Fabry, F. and Zawadzki, I. (1995). Long-term radar observations of the melting layer of precipitation and their interpretation. Journal of the atmospheric sciences, 52(7):838–851. Online: https://n9.cl/la1qq.
Hernandez-Deckers, D. (2022). Features of atmospheric deep convection in northwestern south america obtained from infrared satellite data. Quarterly Journal of the Royal Meteorological Society, 148(742):338–350. Online: https://n9.cl/ehh79.
Kirstetter, P., Andrieu, H., Boudevillain, B., and Delrieu, G. (2013). A physically based identification of vertical profiles of reflectivity from volume scan radar data. Journal of applied meteorology and climatology, 52(7):1645–1663. Online: https://n9.cl/w6d92h.
Klaassen, W. (1988). Radar observations and simulation of the melting layer of precipitation. Journal of Atmospheric Sciences, 45(24):3741–3753. Online: https://n9.cl/p5x3q.
Konwar, M., Maheskumar, R., Das, S., and Morwal,S. (2012). Nature of light rain during presence and absence of bright band. Journal of earth system science, 121:947–961. Online: https://n9.cl/38t3f.
Kumar, S., Castillo-Velarde, C., Valdivia Prado, J., Flores Rojas, J., Callañaupa Gutierrez, S., Moya Alvarez, A., Martine-Castro, D., and Silva, Y. (2020). Rainfall characteristics in the mantaro basin over tropical andes from a vertically pointed profile rain radar and in-situ field campaign. Atmosphere, 11(3):248. Online: https://n9.cl/cqkjhd.
Kumar, S., Vidal, Y., Moya-Álvarez, A., and Martínez-Castro, D. (2019). Effect of the surface wind flow and topography on precipitating cloud systems over the andes and associated amazon basin: Gpm observations. Atmospheric Research, 225:193–208. Online: https://n9.cl/dpba8.
Löffler-Mang, M., Kunz, M., and Schmid, W. (1999). On the performance of a low-cost k-band doppler radar for quantitative rain measurements. Journal of Atmospheric and Oceanic Technology, 16(3):379–
Online: https://n9.cl/gq699.
Luo, L., Xiao, H., Yang, H., Chen, H., Guo, J., Sun, Y., and Feng, L. (2020). Raindrop size distribution and microphysical characteristics of a great rainstorm in 2016 in beijing, china. Atmospheric Research, 239:104895. Online: https://n9.cl/991oo.
Massmann, A., Minder, J., Garreaud, R., Kingsmill, D., Valenzuela, R.and Montecinos, A., and Fults, S.and Snider, J. (2017). The chilean coastal orographic precipitation experiment: Observing the influence of microphysical rain regimes on coastal orographic precipitation. Journal of Hydrometeorology, 18(10):2723–2743. Online: https://n9.cl/6yykb4.
METEK (2009). MRR Physical Basics, Valid for MRR Service Version 5.2.0.1.
Mukherjee, S., Aadhar, S., Stone, D., and Mishra, V. (2018). Increase in extreme precipitation events under anthropogenic warming in india. Weather and climate extremes, 20:45–53. Online: https://n9.cl/ilr75.
Orellana-Alvear, J., Célleri, R., Rollenbeck, R., and Bendix, J. (2017). Analysis of rain types and their z–r relationships at different locations in the high andes of southern ecuador. Journal of Applied Meteorology and Climatology, 56(11):3065–3080. Online: https://n9.cl/aujfbd.
Orellana-Alvear, J., Célleri, R., Rollenbeck, R., and Bendix, J. (2019). Optimization of x-band radar rainfall retrieval in the southern andes of ecuador using a random forest model. Remote Sensing, 11(14):1632. Online: https://n9.cl/2jmom.
Perry, L., Seimon, A., Andrade-Flores, M., Endries, J., Yuter, S., Velarde, F., Arias, S., Bonshoms, M., Burton, E., Winkelmann, I., Cooper, C., Mamani, G., Rado, M., Montoya, N., and Quispe, N. (2017). Characteristics of precipitating storms in glacierized tropical andean cordilleras of peru and bolivia. Annals of the American Association of Geographers, 107(2):309–322. Online: https://n9.cl/tmmwu.
Perry, L., Seimon, A., and Kelly, G. (2014). Precipitation delivery in the tropical high andes of southern peru: new findings and paleoclimatic implications. International journal of Climatology, 34(1):197–215. Online: https://n9.cl/deq83.
Peters, G., Fischer, B., and Andersson, T. (2002). Rain observations with a vertically looking micro rain radar (mrr). Boreal environment research, 7(4):353–362. Online: https://n9.cl/g4ihk.
Peters, G., Fischer, B., Münster, H., Clemens, M., and Wagner, A. (2005). Profiles of raindrop size distributions as retrieved by microrain radars. Journal of Applied Meteorology and Climatology, 44(12):1930–1949. Online: https://n9.cl/6lmqb.
Poveda, G., Mesa, O., Salazar, L., Arias, P., Moreno, H., Vieira, S., Agudelo, P., Toro, V., and Alvarez,
J. (2005). The diurnal cycle of precipitation in the tropical andes of colombia. Monthly Weather Review, 133(1):228–240. Online: https://n9.cl/1rc7k.
Ramadhan, R., Marzuki, V., Vonnisa, M., Harmadi, Hashiguchi, H., and Shimomai, T. (2020). Diurnal variation in the vertical profile of the raindrop size distribution for stratiform rain as inferred from micro rain radar observations in sumatra. Advances in Atmospheric Sciences, 37:832–846. Online: https://n9.cl/tyyg4m.
Rosenfeld, D. and Ulbrich, C. (2003). Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, chapter Cloud microphysical properties, processes, and rainfall estimation opportunities, page 237–258. Cambridge University Press.
Satgé, F., Ruelland, D., Bonnet, M., Molina, J., and Pillco, R. (2019). Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snowhydrological modelling in the lake titicaca region. Hydrology and Earth System Sciences, 23(1):595– 619. Online: https://n9.cl/0iimn.
Schauwecker, S., Rohrer, M., Huggel, C., Endries, J., Montoya, N., Neukom, R., Perry, B., Salzmann, N., Schwarb, M., and Suarez, W. (2017). The freezing level in the tropical andes, peru: An indicator for present and future glacier extents. Journal of Geophysical Research: Atmospheres, 122(10):5172– 5189. Online: https://n9.cl/nge5k.
Seidel, J., Trachte, K., Orellana-Alvear, J., Figueroa, R., Célleri, R., Bendix, J., Fernandez, C., and Huggel, C. (2019). Precipitation characteristics at two locations in the tropical andes by means of vertically pointing micro-rain radar observations. Remote Sensing, 11(24):2985. Online: https://n9.cl/rbmsh.
Sumesh, R., Resmi, E., Unnikrishnan, C., Jash, D., Sreekanth, T., Resmi, M., Rajeevan, K., Nita, S., and Ramachandran, K. (2019). Microphysical aspects of tropical rainfall during bright band events at mid and high-altitude regions over southern western ghats, india. Atmospheric Research, 227:178–19. Online: https://n9.cl/xjsco.
Urgilés, G., Célleri, R., Trachte, K., Bendix, J., and Orellana-Alvear, J. (2021). Clustering of rainfall types using micro rain radar and laser disdrometer observations in the tropical andes. Remote Sensing, 13(5):991. Online: https://n9.cl/wf0eoo.
Ward, E., Buytaert, W., Peaver, L., and Wheater, H. (2011). Evaluation of precipitation products over complex mountainous terrain: A water resources perspective. Advances in water resources, 34(10):1222–1231. Online: https://n9.cl/yb56c.
Wen, G., Xiao, H., Yang, H., Bi, Y., and Xu, W. (2017). Characteristics of summer and winter precipitation over northern china. Atmospheric Research, 197:390–406. Online: https://n9.cl/6mesf.
Yang, S. and Smith, E. (2006). Mechanisms for diurnal variability of global tropical rainfall observed from trmm. Journal of climate, 19(20):5190–5226. Online: https://n9.cl/r7p5o.
Yarleque, C., Vuille, M., Hardy, D., Posadas, A., and Quiroz, R. (2016). Multiscale assessment of spatial precipitation variability over complex mountain terrain using a high-resolution spatiotemporal wavelet reconstruction method. Journal of Geophysical Research: Atmospheres, 121(20):12–198. Online: https://n9.cl/atmk4.
Zhang, W., Huang, A., Zhou, Y., Yang, B., Fang, D., Zhang, L., and Wu, Y. (2017). Diurnal cycle of precipitation over fujian province during the presummer rainy season in southern china. Theoretical and Applied Climatology, 130:993–1006. Online: https://n9.cl/0tzid4.
Zhou, T., Yu, R., Chen, H., Dai, A., and Pan, Y. (2008). Summer precipitation frequency, intensity, and diurnal cycle over china: A comparison of satellite data with rain gauge observations. Journal of Climate, 21(16):3997–4010. Online: https://n9.cl/i6xgz.