El aprendizaje de las funciones logarítmicas por parte de estudiantes de 12.º grado basado en tareas de modelización

Contenido principal del artículo

Samuel Araújo
Floriano Viseu
Ana Jacinta Soares
Isabel Leite

Resumen

La relevancia de aplicar lo aprendido en matemáticas a situaciones cotidianas en el aprendizaje de alumnos nos ha llevado a desarrollar un experimento sobre la enseñanza de la función logarítmica mediante tareas de modelización. A partir de este experimento, pretendemos caracterizar las actividades de alumnos de 12º curso, en la realización de tareas de modelización relativas a temas de funciones logarítmicas utilizando una calculadora gráfica y, a su vez, identificar las dificultades que pueden presentar al resolverlas. Al adoptar un enfoque cualitativo e interpretativo, se recogieron datos a través de los registros escritos del alumnado mientras resolvían las tareas propuestas utilizando la calculadora gráfica. Los resultados indican que las tareas de modelización promovieron el trabajo en grupo y su interés y participación en clase. Durante la exploración de las tareas, el alumnado realizó las actividades que se derivan de la realización de las fases de modelización como son la comprensión del enunciado de la tarea, la organización y el análisis de los datos, la construcción y validación del modelo que mejor se ajusta a los datos y la exploración del modelo, ya sea en la introducción de la función logarítmica y su derivada o en la consolidación de los conocimientos adquiridos. En estas actividades, algunos alumnos presentaron dificultades en cuanto a las propiedades y características de la función logarítmica y su representación gráfica y simbólica. Las fases del ciclo de modelización también dificultaron el uso de la calculadora gráfica por parte de alumnos, concretamente en la realización de regresiones estadísticas y en la configuración de la ventana de visualización.

Detalles del artículo

Sección
Sección Monográfica

Referencias

Ambrus, G., Filler, A. y Vancso, O. (2018). Functional reasoning and working with functions: Functions/mappings in mathematics teaching tradition in Hungary and Germany. The Mathematics Enthusiast, 15(3), 429-454. https://doi.org/10.54870/1551-3440.1439

Anhalt, C. O., Cortez, R. y Bennet, A. B. (2018). The emergence of mathematical modelling competencies: An investigation of prospective secondary mathematics teachers. Mathematical Thinking and Learning, 20(3), 202-221. https://doi.org/10.1080/10986065.2018.1474532

Arcavi, A. (2003). The role of visual representations in learning of mathematics. Educational Studies in Mathematics, 52, 215-241. https://doi.org/10.1023/A:1024312321077

Barbosa, J. C. (2006). Mathematical modelling in classroom: a critical and discursive perspective. ZDM, 38(3), 293-301. https://doi.org/10.1007/BF02652812

Barbosa, J. C. (2009). Modelagem e Modelos Matemáticos na Educação Científica. Alexandria Revista de Educação em Ciência e Tecnologia, 2(2), 69-85.

Blum, W. (2002). ICMI study 14: Applications and modelling in mathematics education – discussion document. ZDM - International Journal on Mathematics Education, 34(5), 229-239.

Blum, W., Galbraith, P. L., Henn, H. W. y Niss, M. (2007). Modelling and applications in mathematics education – The 14th ICMI Study. Springer. https://doi.org/10.1007/s11858-007-0070-z.

Blum, W. y Borromeo Ferri, R. (2009). Mathematical Modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58. https://bit.ly/3yg7BRp

Bogdan, R. y Biklen, S. (1994). Investigação qualitativa em educação: Uma introdução à teoria e aos métodos. Porto Editora.

Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modeling process. ZDM - International Journal on Mathematics Education, 38(2), 86-95.

Borromeo Ferri, R. y Mousoulides, N. (2017). Mathematical modelling as a prototype for interdisciplinary mathematics education? – Theoretical reflections. En Proceedings of CERME 10, edited by Thérèse Dooley, and Ghislaine Gueudet, 900-907. ERME.

Campos, S., Viseu, F., Rocha, H. y Fernandes, J. A., (2015). A calculadora gráfica na promoção da escrita matemática. En S. Carreira Y N. Amado (eds.), 12th International Conference on Technology in Mathematics Teaching (ICTMT12) (pp. 590-598).

Carreira, S. Y Blum, W. (2021). Modelação matemática no ensino e aprendizagem da matemática: Parte 1. Quadrante, 30(1), 1-7. https://doi.org/10.48489/quadrante.24926

Chong, M. S. F., Shahrill, M., y Li, H-C. (2019). The integration of a problem solving framework for Brunei high school mathematics curriculum in increasing student’s affective competency. Journal on Mathematics Education, 10(2), 215-228. https://doi.org/10.22342/jme.10.2.7265.215-228

Consciência, M. (2013). A calculadora gráfica na aprendizagem das funções no ensino secundário. (Tese de Doutoramento). Universidade de Lisboa, Portugal.

Dawn, N. K. E. (2018). Towards a professional development framework for mathematical modeling: the case of Singapore teachers. ZDM, 50, 287-300. https://doi.org/10.1007/s11858-018-0910-z.

Dede, A. T. (2016). Modelling difficulties and their overcoming strategies in the solution of a modelling problem. Acta Didactica Napocencia, 9(3), 21-34.

Galbraith, P. y Stillman, G. (2006). A framework for identifying student blockages during transitions in the Modelling process. ZDM - International Journal on Mathematics Education, 38(2), 143-162.

Greefrath, G. (2019). Mathematical modelling – Background and current projects in Germany. In J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano y Á. Alsina (eds.), Investigación en Educación Matemática XXIII (pp. 23-41). SEIEM.

Heyd-Metzuyanim, E. (2013). The co-construction of learning difficulties in mathematics—teacher–student interactions and their role in the development of a disabled mathematical identity. Educ Stud Math, 83, 341-368. https://doi.org/10.1007/s10649-012-9457-z

Hoe, L. N. y Dawn, N. K. E. (2015). Series on Mathematics Education Vol.8. Mathematical Modelling: From Theory to Practice. National Institute of Education, Nanyan Technological University, Singapura.

Kaiser, G. y Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38(3), 302-310. https://doi.org/10.1007/BF02652813

Kaiser, G. y Maaß, K. (2007). Modelling in lower secondary mathematics classroom-problems and opportunities. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education - The 14 th ICMI Study (pp. 99-108). Springer. https://doi.org/10.1007/978-3-319-62968-1

Karawitz, J. y Schukajlow, S. (2018). Do students value modelling problems and are they confident they can solve such problems? Value and self-efficacy for modelling, word, and intra-mathematical problems. ZDM, 50, 143-157. https://doi.org/10.1007/s11858-017-0893-1

Kastberg, S. (2002). Understanding mathematical concepts: The case of the logarithmic function. (Tese de Doutoramento) The University of Georgia, U.S.A.

Kenney, R. y Kastberg, S. (2013). Links in learning logarithms. Australian Senior Mathematics Journal, 27(1) 12-20.

Lesh, R. y Fennewald, T. (2010). Introduction to Part I Modeling: What is it? Why do it? En R. Lesh, P. Galbraith, C. Haines Y A. Hurford (eds.), Modeling Students' Mathematical Modeling Competencies (pp. 17-22). ICTMA 13.

Ministério da Educação (2017). Perfil Dos Alunos À Saída Perfil Dos Alunos. Direção-Geral da Educação. Ministério da Educação.

National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. NCTM.

Mulqueeny, E. (2012). How do students acquire an understanding of logarithmic concepts? (Tese de Doutoramento). Kent State University.

Niss, M. Y Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102, 9-28. https://doi.org/10.1007/s10649-019-09903-9

OECD (2019). PISA 2018 Mathematics Framework, in PISA 2018 Assessment and Analytical Framework, OECD Publishing.

Ponte, J. P. (2005). Gestão curricular em Matemática. En GTI (ed.), O professor e o desenvolvimento curricular (pp. 11-34). APM.

Ponte, J. P. y Quaresma, M. (2012). O papel do contexto nas tarefas matemáticas. Interacções, 22, 196-216. https://bit.ly/3NoSv1o

Reys-Cabrera, W. (2022). Gamification and collaborative online learning: an analysis of strategies in a Mexican university. Alteridad, 17(1), 24-35. https://doi.org/10.17163/alt.v17n1.2022.02

Rocha, H. (2019). Pre-service teachers’ knowledge: impact on the integration of mathematical applications on the teaching of mathematics. En L. Leite, E. Oldham, L. Carvalho, A. Afonso, F. Viseu, L. Dourado y M. Martinho (eds.), Proceedings of ATEE Winter Conference Conference ‘Science and mathematics education in the 21st century’ (pp. 26-37). ATEE and CIEd.

Rodríguez-García, A. y Arias-Gago, A. (2020). Revisión de propuestas metodológicas: Una taxonomía de agrupación categórica. Alteridad, 15(2), 146-160. https://doi.org/10.17163/alt.v15n2.2020.01

Sawalha, Y. (2018). The effects of teaching exponential functions using authentic problem solving on students’ achievement and attitude. (Tese de Doutoramento). Wayne State University Dissertations.

Shahbari, J. A., & Tabach, M. (2020). Features of modeling processes that elicit mathematical models represented at different semiotic registers. Educational Studies in Mathematics, 105, 115-135. https://doi.org/10.1007/s10649-020-09971-2

Stillman, G., Blum, W. y Kaiser, G. (eds.). (2017). Mathematical Modelling and Applications: Crossing and Researching Boundaries in Mathematics Education. Springer.

Stillman, G., Galbraith, P., Brown, J. y Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. En Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australia.

Teixeira, P., Domingos, A. y Matos, J. M. (2016). A orquestração instrumental dos recursos tecnológicos no ensino da matemática. En Atas do EIEM, Recursos na Educação Matemática (pp. 291-302). EIEM.

Tekkumru-Kisa, M., Stein, M. K. Y Doyle, W. (2020). Theory and research on tasks revisited: Task as a context for students’ thinking in the era of ambitious reforms in mathematics and science. Educational Researcher, 49(8), 606-617. https://doi.org/10.3102/0013189X20932480

Verschaffel, L., Greer, B. Y De Corte, E. (2000). Making sense of word problems. Swets & Zeitlinger.

Viseu, F., & Menezes, L. (2014). Desenvolvimento do conhecimento didático de uma futura professora de matemática do 3.º ciclo: o confronto com a sala de aula na preparação e análise de tarefas de modelação matemática. Revista Latinoamericana de Investigación en Matemática Educativa, 17(3), 347-375. http://doi.org/10.12802/relime.13.1734

Viseu, F., Martins, P. M. y Leite, L. (2020). Prospective primary school teachers' activities when dealing with mathematics modelling tasks. Journal on Mathematics Education, 11(2), 301-318. http://doi.org/10.22342/jme.11.2.7946.301-318.

Viseu, F. y Rocha, H. (2020). Interdisciplinary technological approaches from a mathematics education point of view. En L. Leite, E. Oldham, A. Afonso, F. Viseu, L. Dourado y H. Martinho (eds.), Science and mathematics education for 21st century citizens: challenges and ways forward (pp. 209-229). Nova Science Publishers.

Viseu, F., Silva, A., Rocha, H. y Martins, P. M. (2022). A representação gráfica na aprendizagem de funções por alunos do 10.º ano de escolaridade. Educación Matemática, 34(1), 186-213.

Weber, C. (2017). Multiple models for teaching logarithms: with a focus on graphing functions. In Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education CERME10. 537-544.

Weber, K. (2002). Students’ understanding of exponential and logarithmic functions. En D. Mewborn, P. Sztajn, D. White, H. Wiegel, R. Bryant Y K. Nooney (eds.), Proceedings of the 24th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. ERIC Clearinghouse for Science, Mathematics, and Environmental Education.