Educational frontiers with ChatGPT: a social network analysis of influential tweets
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authorship: The list of authors signing must include only those people who have contributed intellectually to the development of the work. Collaboration in the collection of data is not, by itself, a sufficient criterion of authorship. "Alteridad" declines any responsibility for possible conflicts arising from the authorship of the works that are published.Copyright: The Salesian Polytechnic University preserves the copyrights of the published articles, and favors and allows their reuse under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ecuador license. They may be copied, used, disseminated, transmitted and publicly displayed, provided that: i) the authorship and the original source of their publication (journal, editorial and work URL) are cited; (Ii) are not used for commercial purposes; Iii) mention the existence and specifications of this license.
References
Alharbi, A. S. M., & de Doncker, E. (2019). Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cognitive Systems Research, 54, 50-61. https://doi.org/10.1016/j.cogsys.2018.10.001
Barber, M., Bird, L., Fleming, J., Titterington-Giles, E., Edwards, E., and Leyland, C. (2021). “Gravity assist: Propelling higher education towards a brighter future” Office for students. Available online at: https://www.officeforstudents.org.uk/publications/gravity-assist-propelling-higher-education-towards-abrighter-future/
Battisti, E., Graziano, E. A., & Christofi, M. (2022). Equity crowdfunding platforms and social media: a Twitter analysis. International Journal of Entrepreneurial Behavior & Research, 28(5), 1206-1221. https://doi.org/10.1108/IJEBR-01-2021-0081
Bian, J., Yoshigoe, K., Hicks, A., Yuan, J., He, Z., Xie, M., ... & Modave, F. (2016). Mining Twitter to assess the public perception of the “Internet of Things”. PloS One, 11(7), e0158450. https://doi.org/10.1371/journal.pone.0158450
Boyatzis, R.E. (1998). Transforming qualitative information: thematic analysis and code development. Sage, 1998.
Camacho, D., Luzón, M. V., & Cambria, E. (2021). New research methods & algorithms in social network analysis. Future Generation Computer Systems, 114, 290-293. https://doi.org/10.1016/j.future.2020.08.006
Carpenter, J., Tani, T., Morrison, S., & Keane, J. (2020). Exploring the landscape of educator professional activity on Twitter: An analysis of 16 education-related Twitter hashtags. Professional Development in Education, 1-22. https://doi.org/10.1080/19415257.2020.1752287
Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education. Educational Technology & Society, 25(1), 28-47. https://www.jstor.org/stable/48647028
Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2023). Chatting and Cheating. Ensuring academic integrity in the era of ChatGPT. https://doi.org/10.1080/14703297.2023.2190148
Firat, M. (2023a). How Chat GPT Can Transform Autodidactic Experiences and Open Education?. https://doi.org/10.31219/osf.io/9ge8m
Firat, M. (2023b). Integrating AI Applications into Learning Management Systems to Enhance e-Learning. Instructional Technology and Lifelong Learning, 4 (1), 1-14 . https://doi.org/10.52911/itall.1244453
Grant, N. & Metz, C. (2022). A New Chat Bot Is a ‘Code Red’ for Google’s Search Business. The New York Times. https://www.nytimes.com/2022/12/21/technology/ai-chatgpt-google-search.html
Grover, P., Kar, A. K., Dwivedi, Y. K., & Janssen, M. (2019). Polarization and acculturation in US Election 2016 outcomes–Can twitter analytics predict changes in voting preferences. Technological Forecasting and Social Change, 145, 438-460. https://doi.org/10.1016/j.techfore.2018.09.009
Guan, C., Mou, J., & Jiang, Z. (2020). Artificial intelligence innovation in education: A Twenty-year data-driven historical analysis. International Journal of Innovation Studies, 4(4), 134–147. https://doi.org/10.1016/j.ijis.2020.09.001
Haque, M. U., Dharmadasa, I., Sworna, Z. T., Rajapakse, R. N., & Ahmad, H. (2022). "I think this is the most disruptive technology": Exploring Sentiments of ChatGPT Early Adopters using Twitter Data. arXiv preprint arXiv:2212.05856. https://doi.org/10.48550/arXiv.2212.05856
Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30-50. https://link.springer.com/article/10.1007/s11747-020-00749-9
Jacomy, M., Venturini, T., Heymann, S., Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679
Kaplan, A. M., & Haenlein, M. (2011). The early bird catches the news: Nine things you should know about micro-blogging. Business Horizons, 54(2), 105-113. https://doi.org/10.1016/j.bushor.2010.09.004
Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
Kwak, H., Lee, C., Park, H., & Moon, S. (2010, April). What is Twitter, a social network or a news media?. In Proceedings of the 19th international conference on World wide web (pp. 591-600). https://doi.org/10.1145/1772690.1772751
Lewis, A. (2022). “Multimodal large language models for inclusive collaboration learning tasks.” Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop, 202-210. https://doi.org/10.18653/v1/2022.naacl-srw.26
Li, C., & Xing, W. (2021). “Natural language generation using deep learning to support MOOC learners.” International Journal of Artificial Intelligence in Education, 31(2): 186-214. https://link.springer.com/article/10.1007/s40593-020-00235-x
Li, M., Turki, N., Izaguirre, C. R., DeMahy, C., Thibodeaux, B. L., & Gage, T. (2021). Twitter as a tool for social movement: An analysis of feminist activism on social media communities. Journal of Community Psychology, 49(3), 854-868. https://doi.org/10.1002/jcop.22324
Lu, Y., & Zheng, Q. (2021). Twitter public sentiment dynamics on cruise tourism during the COVID-19 pandemic. Current Issues in Tourism, 24(7), 892-898. https://doi.org/10.1080/13683500.2020.1843607
Newman, M. E. (2004). Analysis of weighted networks. Physical Review E, 70(5), 056131. https://doi.org/10.1103/PhysRevE.70.056131
Noack, A. (2009). Modularity clustering is force-directed layout. Physical Review E, 79(2), 026102. https://doi.org/10.1103/PhysRevE.79.026102
OpenAI, (2023). Chat GPT. Retrieved from https://openai.com/blog/chatgpt/ on 2 January 2023.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence, 1(5), 206-215. https://www.nature.com/articles/s42256-019-0048-x
Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education?. Journal of Applied Learning and Teaching, 6(1). https://doi.org/10.37074/jalt.2023.6.1.9
Serrat, O. (2017). Social network analysis. Knowledge solutions: Tools, methods, and approaches to drive organizational performance, 39-43. https://link.springer.com/chapter/10.1007/978-981-10-0983-9_9
Sier, J. (2022) Chatgpt takes the internet by storm, bad poetry and all. Accessed December 10, 2022. https://www.afr.com/technology/ chatgpt-takes-the-internet-by-storm-bad-poetry-and-all-20221207-p5c4hv
Taecharungroj, V. (2023). “What Can ChatGPT Do?” Analyzing Early Reactions to the Innovative AI Chatbot on Twitter. Big Data and Cognitive Computing, 7(1), 35. https://doi.org/10.3390/bdcc7010035
Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8(1), 1-10. https://doi.org/10.1186/1471-2288-8-45
van Dis, E. A., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. https://doi.org/10.1038/d41586-023-00288-7
Yogatama, A., Sugiarto, I., & Gumelar, A. B. (2022). Social Network Analysis of Citizen Initiated Vaccination Campaigns on Twitter. In International Conference on Community Empowerment and Engagement (ICCEE 2021) (pp. 122-132). Atlantis Press. https://doi.org/10.2991/assehr.k.220501.014
Zhuo, T. Y., Huang, Y., Chen, C., & Xing, Z. (2023). Exploring ai ethics of ChatGPT: A diagnostic analysis. arXiv preprint arXiv:2301.12867. https://doi.org/10.48550/arXiv.2301.12867