Fronteras educativas con ChatGPT: un análisis de redes sociales de tuits influyentes

Contenido principal del artículo

Mehmet Firat
Saniye Kuleli

Resumen

El uso sin precedentes de ChatGPT de OpenAI que alcanzó 100 millones de usuarios diarios a principios de 2023 es una muestra del creciente interés en la IA para la mejora educativa. Esta investigación pretende analizar la recepción pública inicial y las implicaciones educativas de ChatGPT, utilizando el análisis de redes sociales de los 100 tuits más influyentes. Mediante el algoritmo ForceAtlas2 y el análisis de contenido temático, el estudio explora el atractivo de ChatGPT y sus perspectivas como herramienta educativa. Los resultados subrayan el potencial de ChatGPT para revolucionar los métodos de enseñanza, facilitar el aprendizaje personalizado y reducir las brechas en el acceso a una educación de calidad. Además, el análisis informa sobre el papel de ChatGPT en la promoción del pensamiento crítico y el aprendizaje interactivo, su utilidad en la creación de contenidos educativos y su capacidad para mejorar las interacciones entre profesores y alumnos. Estas conclusiones apuntan a un cambio hacia una educación mejorada por la IA y abogan por la integración de ChatGPT y tecnologías similares en los entornos de aprendizaje. El debate aboga por la investigación empírica sobre el impacto educativo de ChatGPT e insta a adoptar un enfoque cauteloso en su adopción. Destaca la necesidad de marcos que aprovechen el poder de ChatGPT al tiempo que abordan los retos éticos y prácticos. Por último, este estudio describe la acogida inicial de ChatGPT y destaca su potencial transformador en la educación. Hace un llamamiento a la integración estratégica de la IA para optimizar los procesos educativos y subraya la importancia de seguir investigando para navegar por el papel evolutivo de la IA en el aprendizaje.

Detalles del artículo

Sección
Sección Miscelánea

Referencias

Alharbi, A. S. M., & de Doncker, E. (2019). Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cognitive Systems Research, 54, 50-61. https://doi.org/10.1016/j.cogsys.2018.10.001

Barber, M., Bird, L., Fleming, J., Titterington-Giles, E., Edwards, E., and Leyland, C. (2021). “Gravity assist: Propelling higher education towards a brighter future” Office for students. Available online at: https://www.officeforstudents.org.uk/publications/gravity-assist-propelling-higher-education-towards-abrighter-future/

Battisti, E., Graziano, E. A., & Christofi, M. (2022). Equity crowdfunding platforms and social media: a Twitter analysis. International Journal of Entrepreneurial Behavior & Research, 28(5), 1206-1221. https://doi.org/10.1108/IJEBR-01-2021-0081

Bian, J., Yoshigoe, K., Hicks, A., Yuan, J., He, Z., Xie, M., ... & Modave, F. (2016). Mining Twitter to assess the public perception of the “Internet of Things”. PloS One, 11(7), e0158450. https://doi.org/10.1371/journal.pone.0158450

Boyatzis, R.E. (1998). Transforming qualitative information: thematic analysis and code development. Sage, 1998.

Camacho, D., Luzón, M. V., & Cambria, E. (2021). New research methods & algorithms in social network analysis. Future Generation Computer Systems, 114, 290-293. https://doi.org/10.1016/j.future.2020.08.006

Carpenter, J., Tani, T., Morrison, S., & Keane, J. (2020). Exploring the landscape of educator professional activity on Twitter: An analysis of 16 education-related Twitter hashtags. Professional Development in Education, 1-22. https://doi.org/10.1080/19415257.2020.1752287

Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education. Educational Technology & Society, 25(1), 28-47. https://www.jstor.org/stable/48647028

Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2023). Chatting and Cheating. Ensuring academic integrity in the era of ChatGPT. https://doi.org/10.1080/14703297.2023.2190148

Firat, M. (2023a). How Chat GPT Can Transform Autodidactic Experiences and Open Education?. https://doi.org/10.31219/osf.io/9ge8m

Firat, M. (2023b). Integrating AI Applications into Learning Management Systems to Enhance e-Learning. Instructional Technology and Lifelong Learning, 4 (1), 1-14 . https://doi.org/10.52911/itall.1244453

Grant, N. & Metz, C. (2022). A New Chat Bot Is a ‘Code Red’ for Google’s Search Business. The New York Times. https://www.nytimes.com/2022/12/21/technology/ai-chatgpt-google-search.html

Grover, P., Kar, A. K., Dwivedi, Y. K., & Janssen, M. (2019). Polarization and acculturation in US Election 2016 outcomes–Can twitter analytics predict changes in voting preferences. Technological Forecasting and Social Change, 145, 438-460. https://doi.org/10.1016/j.techfore.2018.09.009

Guan, C., Mou, J., & Jiang, Z. (2020). Artificial intelligence innovation in education: A Twenty-year data-driven historical analysis. International Journal of Innovation Studies, 4(4), 134–147. https://doi.org/10.1016/j.ijis.2020.09.001

Haque, M. U., Dharmadasa, I., Sworna, Z. T., Rajapakse, R. N., & Ahmad, H. (2022). "I think this is the most disruptive technology": Exploring Sentiments of ChatGPT Early Adopters using Twitter Data. arXiv preprint arXiv:2212.05856. https://doi.org/10.48550/arXiv.2212.05856

Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30-50. https://link.springer.com/article/10.1007/s11747-020-00749-9

Jacomy, M., Venturini, T., Heymann, S., Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679

Kaplan, A. M., & Haenlein, M. (2011). The early bird catches the news: Nine things you should know about micro-blogging. Business Horizons, 54(2), 105-113. https://doi.org/10.1016/j.bushor.2010.09.004

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274

Kwak, H., Lee, C., Park, H., & Moon, S. (2010, April). What is Twitter, a social network or a news media?. In Proceedings of the 19th international conference on World wide web (pp. 591-600). https://doi.org/10.1145/1772690.1772751

Lewis, A. (2022). “Multimodal large language models for inclusive collaboration learning tasks.” Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop, 202-210. https://doi.org/10.18653/v1/2022.naacl-srw.26

Li, C., & Xing, W. (2021). “Natural language generation using deep learning to support MOOC learners.” International Journal of Artificial Intelligence in Education, 31(2): 186-214. https://link.springer.com/article/10.1007/s40593-020-00235-x

Li, M., Turki, N., Izaguirre, C. R., DeMahy, C., Thibodeaux, B. L., & Gage, T. (2021). Twitter as a tool for social movement: An analysis of feminist activism on social media communities. Journal of Community Psychology, 49(3), 854-868. https://doi.org/10.1002/jcop.22324

Lu, Y., & Zheng, Q. (2021). Twitter public sentiment dynamics on cruise tourism during the COVID-19 pandemic. Current Issues in Tourism, 24(7), 892-898. https://doi.org/10.1080/13683500.2020.1843607

Newman, M. E. (2004). Analysis of weighted networks. Physical Review E, 70(5), 056131. https://doi.org/10.1103/PhysRevE.70.056131

Noack, A. (2009). Modularity clustering is force-directed layout. Physical Review E, 79(2), 026102. https://doi.org/10.1103/PhysRevE.79.026102

OpenAI, (2023). Chat GPT. Retrieved from https://openai.com/blog/chatgpt/ on 2 January 2023.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence, 1(5), 206-215. https://www.nature.com/articles/s42256-019-0048-x

Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education?. Journal of Applied Learning and Teaching, 6(1). https://doi.org/10.37074/jalt.2023.6.1.9

Serrat, O. (2017). Social network analysis. Knowledge solutions: Tools, methods, and approaches to drive organizational performance, 39-43. https://link.springer.com/chapter/10.1007/978-981-10-0983-9_9

Sier, J. (2022) Chatgpt takes the internet by storm, bad poetry and all. Accessed December 10, 2022. https://www.afr.com/technology/ chatgpt-takes-the-internet-by-storm-bad-poetry-and-all-20221207-p5c4hv

Taecharungroj, V. (2023). “What Can ChatGPT Do?” Analyzing Early Reactions to the Innovative AI Chatbot on Twitter. Big Data and Cognitive Computing, 7(1), 35. https://doi.org/10.3390/bdcc7010035

Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8(1), 1-10. https://doi.org/10.1186/1471-2288-8-45

van Dis, E. A., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. https://doi.org/10.1038/d41586-023-00288-7

Yogatama, A., Sugiarto, I., & Gumelar, A. B. (2022). Social Network Analysis of Citizen Initiated Vaccination Campaigns on Twitter. In International Conference on Community Empowerment and Engagement (ICCEE 2021) (pp. 122-132). Atlantis Press. https://doi.org/10.2991/assehr.k.220501.014

Zhuo, T. Y., Huang, Y., Chen, C., & Xing, Z. (2023). Exploring ai ethics of ChatGPT: A diagnostic analysis. arXiv preprint arXiv:2301.12867. https://doi.org/10.48550/arXiv.2301.12867