Fronteras educativas con ChatGPT: un análisis de redes sociales de tuits influyentes
Contenido principal del artículo
Resumen
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Autoría: En la lista de autores firmantes deben figurar únicamente aquellas personas que han contribuido intelectualmente al desarrollo del trabajo. Haber colaborado en la recolección de datos no es, por sí mismo, criterio suficiente de autoría. “Alteridad” declina cualquier responsabilidad sobre posibles conflictos derivados de la autoría de los trabajos que se publiquen.
Copyright: La Universidad Politécnica Salesiana conserva los derechos patrimoniales (copyright) de los artículos publicados, y favorece y permite la reutilización de las mismas bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 3.0 Ecuador. Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
Referencias
Alharbi, A. S. M., & de Doncker, E. (2019). Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cognitive Systems Research, 54, 50-61. https://doi.org/10.1016/j.cogsys.2018.10.001
Barber, M., Bird, L., Fleming, J., Titterington-Giles, E., Edwards, E., and Leyland, C. (2021). “Gravity assist: Propelling higher education towards a brighter future” Office for students. Available online at: https://www.officeforstudents.org.uk/publications/gravity-assist-propelling-higher-education-towards-abrighter-future/
Battisti, E., Graziano, E. A., & Christofi, M. (2022). Equity crowdfunding platforms and social media: a Twitter analysis. International Journal of Entrepreneurial Behavior & Research, 28(5), 1206-1221. https://doi.org/10.1108/IJEBR-01-2021-0081
Bian, J., Yoshigoe, K., Hicks, A., Yuan, J., He, Z., Xie, M., ... & Modave, F. (2016). Mining Twitter to assess the public perception of the “Internet of Things”. PloS One, 11(7), e0158450. https://doi.org/10.1371/journal.pone.0158450
Boyatzis, R.E. (1998). Transforming qualitative information: thematic analysis and code development. Sage, 1998.
Camacho, D., Luzón, M. V., & Cambria, E. (2021). New research methods & algorithms in social network analysis. Future Generation Computer Systems, 114, 290-293. https://doi.org/10.1016/j.future.2020.08.006
Carpenter, J., Tani, T., Morrison, S., & Keane, J. (2020). Exploring the landscape of educator professional activity on Twitter: An analysis of 16 education-related Twitter hashtags. Professional Development in Education, 1-22. https://doi.org/10.1080/19415257.2020.1752287
Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education. Educational Technology & Society, 25(1), 28-47. https://www.jstor.org/stable/48647028
Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2023). Chatting and Cheating. Ensuring academic integrity in the era of ChatGPT. https://doi.org/10.1080/14703297.2023.2190148
Firat, M. (2023a). How Chat GPT Can Transform Autodidactic Experiences and Open Education?. https://doi.org/10.31219/osf.io/9ge8m
Firat, M. (2023b). Integrating AI Applications into Learning Management Systems to Enhance e-Learning. Instructional Technology and Lifelong Learning, 4 (1), 1-14 . https://doi.org/10.52911/itall.1244453
Grant, N. & Metz, C. (2022). A New Chat Bot Is a ‘Code Red’ for Google’s Search Business. The New York Times. https://www.nytimes.com/2022/12/21/technology/ai-chatgpt-google-search.html
Grover, P., Kar, A. K., Dwivedi, Y. K., & Janssen, M. (2019). Polarization and acculturation in US Election 2016 outcomes–Can twitter analytics predict changes in voting preferences. Technological Forecasting and Social Change, 145, 438-460. https://doi.org/10.1016/j.techfore.2018.09.009
Guan, C., Mou, J., & Jiang, Z. (2020). Artificial intelligence innovation in education: A Twenty-year data-driven historical analysis. International Journal of Innovation Studies, 4(4), 134–147. https://doi.org/10.1016/j.ijis.2020.09.001
Haque, M. U., Dharmadasa, I., Sworna, Z. T., Rajapakse, R. N., & Ahmad, H. (2022). "I think this is the most disruptive technology": Exploring Sentiments of ChatGPT Early Adopters using Twitter Data. arXiv preprint arXiv:2212.05856. https://doi.org/10.48550/arXiv.2212.05856
Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30-50. https://link.springer.com/article/10.1007/s11747-020-00749-9
Jacomy, M., Venturini, T., Heymann, S., Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679
Kaplan, A. M., & Haenlein, M. (2011). The early bird catches the news: Nine things you should know about micro-blogging. Business Horizons, 54(2), 105-113. https://doi.org/10.1016/j.bushor.2010.09.004
Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
Kwak, H., Lee, C., Park, H., & Moon, S. (2010, April). What is Twitter, a social network or a news media?. In Proceedings of the 19th international conference on World wide web (pp. 591-600). https://doi.org/10.1145/1772690.1772751
Lewis, A. (2022). “Multimodal large language models for inclusive collaboration learning tasks.” Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop, 202-210. https://doi.org/10.18653/v1/2022.naacl-srw.26
Li, C., & Xing, W. (2021). “Natural language generation using deep learning to support MOOC learners.” International Journal of Artificial Intelligence in Education, 31(2): 186-214. https://link.springer.com/article/10.1007/s40593-020-00235-x
Li, M., Turki, N., Izaguirre, C. R., DeMahy, C., Thibodeaux, B. L., & Gage, T. (2021). Twitter as a tool for social movement: An analysis of feminist activism on social media communities. Journal of Community Psychology, 49(3), 854-868. https://doi.org/10.1002/jcop.22324
Lu, Y., & Zheng, Q. (2021). Twitter public sentiment dynamics on cruise tourism during the COVID-19 pandemic. Current Issues in Tourism, 24(7), 892-898. https://doi.org/10.1080/13683500.2020.1843607
Newman, M. E. (2004). Analysis of weighted networks. Physical Review E, 70(5), 056131. https://doi.org/10.1103/PhysRevE.70.056131
Noack, A. (2009). Modularity clustering is force-directed layout. Physical Review E, 79(2), 026102. https://doi.org/10.1103/PhysRevE.79.026102
OpenAI, (2023). Chat GPT. Retrieved from https://openai.com/blog/chatgpt/ on 2 January 2023.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence, 1(5), 206-215. https://www.nature.com/articles/s42256-019-0048-x
Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education?. Journal of Applied Learning and Teaching, 6(1). https://doi.org/10.37074/jalt.2023.6.1.9
Serrat, O. (2017). Social network analysis. Knowledge solutions: Tools, methods, and approaches to drive organizational performance, 39-43. https://link.springer.com/chapter/10.1007/978-981-10-0983-9_9
Sier, J. (2022) Chatgpt takes the internet by storm, bad poetry and all. Accessed December 10, 2022. https://www.afr.com/technology/ chatgpt-takes-the-internet-by-storm-bad-poetry-and-all-20221207-p5c4hv
Taecharungroj, V. (2023). “What Can ChatGPT Do?” Analyzing Early Reactions to the Innovative AI Chatbot on Twitter. Big Data and Cognitive Computing, 7(1), 35. https://doi.org/10.3390/bdcc7010035
Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8(1), 1-10. https://doi.org/10.1186/1471-2288-8-45
van Dis, E. A., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. https://doi.org/10.1038/d41586-023-00288-7
Yogatama, A., Sugiarto, I., & Gumelar, A. B. (2022). Social Network Analysis of Citizen Initiated Vaccination Campaigns on Twitter. In International Conference on Community Empowerment and Engagement (ICCEE 2021) (pp. 122-132). Atlantis Press. https://doi.org/10.2991/assehr.k.220501.014
Zhuo, T. Y., Huang, Y., Chen, C., & Xing, Z. (2023). Exploring ai ethics of ChatGPT: A diagnostic analysis. arXiv preprint arXiv:2301.12867. https://doi.org/10.48550/arXiv.2301.12867