Optimización de hiperparámetros de regresión del proceso gaussiano para predecir problemas financieros
Contenido principal del artículo
Resumen
Palabras Clave
financial distress, Gaussian process regression, deep learning, investment financing, financial risk prediction, Gaussian regression, financial ratios, deep learning models dificultades financieras, regresión del proceso gaussiano, aprendizaje profundo, financiamiento de inversiones, predicción del riesgo financiero, regresión gaussiana, coeficientes financieros, modelos de aprendizaje profundo
Descargas
Citas
https://doi.org/10.3390/en11123261
Bonello, J., Brédart, X. y Vella, V. 2018. Machine learning models for predicting financial distress. Journal of Research in Economics, 2, 174-185. https://doi.org/10.24954/JORE.2018.22
Chen, S. y Shen, Z. D. 2020. Financial distress prediction using hybrid machine learning techniques. Asian Journal of Economics, Business and Accounting, 16, 1-12. https://doi.org/10.9734/ajeba/2020/v16i230231
Chen, S. D. y Jhuang, S. 2018. Financial distress prediction using data mining techniques. ICIC Express Letters, Part B: Applications, 9(2), 131-136. https://bit.ly/3qH5eHc
Chen, W.-S. y Du, Y.-K. 2009. Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications, 36(2), 4075-4086.
https://doi.org/10.1016/j.eswa.2008.03.020
Costa, M., Lisboa, I. y Gameiro, A. 2022. Is the financial report quality important in the default prediction? SME Portuguese Construction Sector Evidence. Risks, 10(5).
https://doi.org/10.3390/risks10050098
Ferkousl, K., Chellalil, F., Kouzoul, A. y Bekkar, B. 2021. Wavelet-Gaussian process regression model for forecasting daily solar radiation in the Saharan climate. Clean Energy, 5(2), 316-328. https://doi.org/10.1093/ce/zkab012
Gavurova, B., Belas, J., Bilan, Y. y Horak, J. 2020. Study of legislative and administrative obstacles to SMEs business in the Czech Republic and Slovakia. Oeconomia Copernicana, 11(4), 689-719. https://doi.org/10.24136/OC.2020.028
Gregova, E., Valaskova, K., Adamko, P., Tumpach, M. y Jaros, J. 2020. Predicting financial distress of slovak enterprises: comparison of selected traditional and learning algorithms methods. Sustainability, 12(10).
https://doi.org/10.3390/su12103954
Hamoudi, Y., Amimeur, H., Aouzellag, D., Abdolraso, M. G. M. y Ustun, T. S. 2023. Hyperparameter bayesian optimization of Gaussian process regression applied in speed-sensorless predictive torque control of an autonomous wind energy conversion system. Energies, 16(12). https://doi.org/10.3390/en16124738
Hantono, H. (2019). Predicting financial distress using Altman score, Grover score, Springate score, Zmijewski score (case study on consumer goods company). Accountability, 8(1), 1-16.
https://doi.org/10.32400/ja.23354.8.1.2019.1-16
Herfurth, H. 2020. Gaussian process regression in computational finance. Project Report, Uppsala University, 1-29. https://bit.ly/3KGoUSk
Horak, J., Vrbka, J. y Suler, P. 2020. Support vector machine methods and artificial neural networks used for the development of bankruptcy prediction models and their comparison. Journal of Risk and Financial Management, 13(3). https://doi.org/10.3390/jrfm13030060
Jan, C. l. 2021. Financial information asymmetry: using deep learning algorithms to predict financial distress. Symmetry, 13(3). https://doi.org/10.3390/sym13030443
Jeong, J. y Kim, C. 2022. Comparison of machine learning approaches for medium-to-long-term financial distress predictions in the construction industry. Buildings, 12(10). https://doi.org/10.3390/buildings12101759
Kliestik, T., Vrbka, J. y Rowland, Z. 2018. Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium-Quarterly Journal of Economics and Economic Policy, 13(3), 569-593.
https://doi.org/10.24136/eq.2018.028
Krulicky, T. y Horak, J. 2021. Business performance and financial health assessment through Artificial Intelligence. Ekonomicko - manažerské spektrum, 15(2), 38-51.
Liew, K. F., Lam, W. S. y Lam, W. H. 2023. Financial distress analysis of technology companies using grover model. Computer Sciences & Mathematics Forum, 7(1).
https://doi.org/10.3390/IOCMA2023-14405
Liu, Y., Chen, K., Kumar, A. y Patnaik, P. 2023. Principles of machine learning and its application to thermal barrier coatings. Coatings, 13(7). https://doi.org/10.3390/coatings13071140
Paule-Vianez, J. 2019. Bayesian networks to predict financial distress in spanish banking. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, 20, 131-152. https://doi.org/10.24309/recta.2019.20.2.02
Qu, Y., Quan, P., Lei, M. y Shi, Y. 2019. Review of bankruptcy prediction using machine learning and deep learning techniques. Procedia Computer Science, 162, 895-899.
https://doi.org/10.1016/j.procs.2019.12.065
Rahman, M., Sa, C. L. y Masud. M. A. K. 2021. Predicting firms’ financial distress: an empirical analysis using the F-Score Model. Journal of Risk and Management, 14(5).
https://doi.org/10.3390/jrfm14050199
Shi, Y. y Li, X. 2019. An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Intangible Capital Journal, 15(2), 1866-1875. https://doi.org/10.3926/ic.1354
Taki, M., Rohani, A., Soheili-Fard, F. y Abdeshahi, A. 2018. Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. Journal of Cleaner Production, 172, 3028-3041. https://doi.org/10.1016/j.jclepro.2017.11.107
Vochozka, M., Vrbka, J. y Suler, P. 2020. Bankruptcy or success? The effective prediction of a company’s financial development using LSTM. Sustainability, 12(18).
https://doi.org/10.3390/su12187529
Wang, S., Gong, J., Gao, H., Liu, W. y Feng, Z. 2023. Gaussian process regression and cooperation search algorithm for forecasting nonstationary runoff time series. Water, 15(11). https://doi.org/10.3390/w15112111
Yang, Z., Li, X., Yao, X., Sun, J. y Shan, T. 2023. Gaussian Process Gaussian Mixture PHD filter for 3D multiple extended target Tracking. Remote Sensing, 15(13).
https://doi.org/10.3390/rs15133224
Zhou, T., Song, Z. y Sundmacher, K. 2019. Big data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design. Engineering, 5, 1017-1026.
https://doi.org/10.1016/j.eng.2019.02.011