Análisis comparativo de patrones de flujo en toberas planas y cónicas fuera de diseño

Contenido principal del artículo

San L. Tolentino
JORGE LUIS Mírez

Resumen

En el presente trabajo, el objetivo es determinar el comportamiento de los patrones de flujo del campo de número de Mach y de presión para toberas planas y cónicas fuera de diseño, para el semiángulo de la divergente de 10,85°. Se empleó el código ANSYS-Fluent R16.2 para simular el campo de flujo con el modelo RANS y el modelo de turbulencia SAS para las condiciones de flujo en estado transitorio, para el rango de relaciones de presión de la tobera de NPR 1,97 a 8,91. Los resultados presentan diferentes patrones de flujo de número de Mach y de presión estática entre ambas toberas, donde los frentes de choque normales no tienen las mismas posiciones para un mismo valor de NPR. El pico máximo de la fluctuación del flujo en la línea central de la divergente de la tobera cónica es Mach 2,844, mientras que en la tobera plana es Mach 2,011, por lo que la velocidad del flujo es menor en la tobera plana. La velocidad del flujo a la salida de la tobera cónica es Mach 2,535, la cual es 27,32 % mayor que la velocidad del flujo en la tobera plana, que tiene Mach 1,991. El área de la garganta de la tobera tiene un efecto significativo para el tránsito del flujo másico, ya que el área de la garganta de la tobera plana es mayor con respecto al de la tobera cónica.

Detalles del artículo

Sección
Artículo Científico

Referencias

G. P. Sutton and O. Biblarz, Rocket Propulsion Elements. John Wiley & Sons, 2016. [Online]. Available: https://upsalesiana.ec/ing33ar10r1

G. Scarlatella, M. Tajmar, and C. Bach, “Advanced nozzle concepts in retro-propulsion applications for reusable launch vehicle recovery: a case study,” in 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021. [Online]. Available: https://upsalesiana.ec/ing33ar10r2

G. Hagemann, A. Preuss, J. Kretschmer, F. Grauer, M. Frey, R. Ryden, and R. Stark, Technology Investigation for High Area Ratio Nozzle Extensions. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. [Online]. Available: https://doi.org/10.2514/6.2003-4912

F. J. Malina, “Characteristics of the rocket motor unit based on the theory of perfect gases,” Journal of the Franklin Institute, vol. 230, no. 4, pp. 433–454, 1940. [Online]. Available: https://doi.org/10.1016/S0016-0032(40)91348-5

S. Zivkovic, m. Milinovic, and N. Adamec, “Eksperimentalno i numericko istrazivanje supersonicnog ravanskog mlaznika sa vektorisanim potiskom mehanickim preprekama,” FME Transactions, vol. 42, no. 3, pp. 205–211, 2014. [Online]. Available: https://doi.org/10.5937/fmet1403205Z

C. A. Hunter, “Experimental investigation of separated nozzle flows,” Journal of Propulsion and Power, vol. 20, no. 3, pp. 527–532, 2004. [Online]. Available: https://doi.org/10.2514/1.4612

J. D. Anderson, Hypersonic and High-Temperature Gas Dynamics, Third Edition. AIAA Education Series, 2019. [Online]. Available: https://doi.org/10.2514/5.9781624105142.0000.0000

K. Q. Zaman and A. F. Fagan, Flow, noise and thrust of supersonic plug nozzles. AIAA SCITECH, 2024. [Online]. Available: https://doi.org/10.2514/6.2024-2305

J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer Berlin, Heidelberg, 2012. [Online]. Available: https://doi.org/10.1007/978-3-642-56026-2

H. Schlichting and K. Gersten, Boundary- Layer Theory. Springer Berlin, Heidelberg, 2016. [Online]. Available: https://doi.org/10.1007/978-3-662-52919-5

S. L. Tolentino, “Comparative analysis of 2d simulations and isentropic equations for compressible flow in experimental nozzles,” INCAS BULLETIN, vol. 15, pp. 111–125, 09 2023. [Online]. Available: https://doi.org/10.13111/2066-8201.2023.15.3.9

——, “Empirical equation of the mach number as a function of the stagnation pressure ratio for a quasi- one-dimensional compressible flow,” FME Transactions, vol. 51, 03 2023. [Online]. Available: http://dx.doi.org/10.5937/fme2302149T

J. Majdalani and B. Maicke, “Explicit inversion of stodola’s area-mach number equation,” Journal of Heat Transfer, vol. 133, p. 071702, 07 2011. [Online]. Available: http://dx.doi.org/10.1115/1.4002596

A. Ferrari, “Exact solutions for quasi-onedimensional compressible viscous flows in conical nozzles,” Journal of Fluid Mechanics, vol. 915, p. A1, 2021. [Online]. Available: https://doi.org/10.1017/jfm.2020.1158

S. L. Tolentino, J. Mírez Tarrillo, and S. Caraballo F., “Numerical analysis of the shock train in conical nozzles with straightcut throats,” FME Transactions, vol. 52, pp. 186–195, 01 2024. [Online]. Available: http://dx.doi.org/10.5937/fme2402186T

P. Krehl and S. Engemann, “August toepler aE” the first who visualized shock waves,” Shock Waves, vol. 5, no. 1, pp. 1–18, Jun 1995. [Online]. Available: https://doi.org/10.1007/BF02425031

C. Génin, R. Stark, and S. Karl, “Shock system deformation in high mach number rocket nozzles,” in 31st International Symposium on Shock Waves 2, A. Sasoh, T. Aoki, and M. Katayama, Eds. Cham: Springer International Publishing, 2019, pp. 543–549. [Online]. Available: https://doi.org/10.1007/978-3-319-91017-8_69

S. B. Verma and C. Manisankar, “Origin of flow asymmetry in planar nozzles with separation,” Shock Waves, vol. 24, no. 2, pp. 191–209, Mar 2014. [Online]. Available: https://doi.org/10.1007/s00193-013-0492-1

J. O¨stlund and B. Muhammad-Klingmann, “Supersonic flow separation with application to rocket engine nozzles,” Applied Mechanics Reviews, vol. 58, no. 3, pp. 143–177, May 2005. [Online]. Available: https://doi.org/10.1115/1.1894402

V. Zmijanovic, A. Chpoun, and B. Rasuo, “Flow separation modes and side phenomena in an overexpanded nozzle,” FME Transactions, vol. 40, pp. 111–118, 06 2012. [Online]. Available: https://upsalesiana.ec/ing33ar10r21

A. Hadjadj, O. Ben-Nasr, M. Shadloo, and A. Chaudhuri, “Effect of wall temperature in supersonic turbulent boundary layers: A numerical study,” International Journal of Heat and Mass Transfer, vol. 81, pp. 426–438, 2015. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.025

R. Zangeneh, “Wall temperature effects on shock unsteadiness in a reattaching compressible turbulent shear layer,” International Journal of Heat and Fluid Flow, vol. 92, p. 108876, 2021. [Online]. Available: https://doi.org/10.1016/j.ijheatfluidflow.2021.108876

S. L. Tolentino, J. Mírez, and O. González, “Numerical analysis of the flow field in a planar nozzle for different divergent angles,” Journal of Mechanical Enginnering and Sciences (JMES), vol. 16, no. 4, pp. 9241–9252, 2022. [Online]. Available: https://doi.org/10.15282/jmes.16.4.2022.07.0731

R. Arora and A. Vaidyanathan, “Experimental investigation of flow through planar double divergent nozzles,” Acta Astronautica, vol. 112, pp. 200–216, 2015. [Online]. Available: https://doi.org/10.1016/j.actaastro.2015.03.020

S. L. Tolentino, J. Mírez, and S. A. Caraballo, “Numericka analiza evolucije udarnog voza u planarnim mlaznicama sa duzinom grla,” FME Transactions, vol. 51, no. 4, pp. 595–605, 2023. [Online]. Available: https://doi.org/10.5937/fme2304595T

M. L. Mason, L. E. Putnam, and R. J. Re, The effect of throat contouring on two-dimensional converging-diverging nozzles at static conditions. NASA Technical Paper 1704, 1980. [Online]. Available: https://upsalesiana.ec/ing33ar10r27

S. L. Tolentilo and J. Mirez, “Efekat dužine grla na obrasce protoka u konusnim mlaznicama van dizajna,” FME Transactions, vol. 50, no. 2, pp. 271–280, 2022. [Online]. Available: https://doi.org/10.5937/fme2201271T

B. Wagner and S. Schlechtriem, Numerical and Experimental Study of the Flow in a Planar Expansion-Deflection Nozzle. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011. [Online]. Available: https://doi.org/10.2514/6.2011-5942

A. Bourgoing and P. Reijasse, “Experimental analysis of unsteady separated flows in a supersonic planar nozzle,” Shock Waves, vol. 14, no. 4, pp. 251–258, Nov 2005. [Online]. Available: https://doi.org/10.1007/s00193-005-0269-2

M. Faheem, A. Khan, R. Kumar, S. Afghan Khan, W. Asrar, and A. M. Sapardi, “Experimental study on the mean flow characteristics of a supersonic multiple jet configuration,” Aerospace Science and Technology, vol. 108, p. 106377, 2021. [Online]. Available: https://doi.org/10.1016/j.ast.2020.106377

(ANSYS-Fluent). (2023) Ansys fluent theory guide 2020r1. Ansys Innovation Space. [Online]. Available: https://upsalesiana.ec/ing33ar10r32

F. M. White, Fluid Mechanics. Mc-Graw Hill, 2011. [Online]. Available: https://upsalesiana.ec/ing33ar10r33

Y. Egorov, F. R. Menter, R. Lechner, and D. Cokljat, “The scale-adaptive simulation method for unsteady turbulent flow predictions. part 2: Application to complex flows,” Flow, Turbulence and Combustion, vol. 85, no. 1, pp. 139–165, Jul 2010. [Online]. Available:

https://doi.org/10.1007/s10494-010-9265-4

P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, and A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities,” Theoretical and Computational Fluid Dynamics, vol. 20, no. 3, pp. 181–195, Jul 2006. [Online]. Available: https://doi.org/10.1007/s00162-006-0015-0

F. Menter, M. Kuntz, and R. B. Langtry, “Ten years of industrial experience with the sst turbulence model,” Heat and Mass Transfer, vol. 4, 01 2003. [Online]. Available: https://upsalesiana.ec/ing33ar10r36

S. Tsan-Hsing, W. L. William, S. Aamir, Y. Zhigang, and Z. Jiang, “A new k-E eddy viscosity model for high reynolds number turbulent flows,” Computers & Fluids, vol. 24, no. 3, pp. 227–238, 1995. [Online]. Available: https://doi.org/10.1016/0045-7930(94)00032-T