Una evaluación integral de las técnicas de ia para predecir el índice de calidad del aire: RNN y transformers

Contenido principal del artículo

Pablo Andrés Buestán Andrade
Pedro Esteban Carrión Zamora
Anthony Eduardo Chamba Lara
Juan Pablo Pazmiño Piedra

Resumen

Este estudio evalúa la eficacia de las redes neuronales recurrentes (RNN) y los modelos basados en transformadores para predecir el índice de calidad del aire (ICA). La investigación compara los modelos RNN tradicionales, incluidos los de memoria a corto y largo plazo (LSTM) y la unidad recurrente controlada (GRU), con arquitecturas avanzadas de transformadores. El estudio utiliza datos de una estación meteorológica en Cuenca, Ecuador, centrándose en contaminantes como CO, NO2, O3, PM2.5 y SO2. Para evaluar el rendimiento de los modelos, se utilizaron métricas clave como el error cuadrático medio (RMSE), el error absoluto medio (MAE) y el coeficiente de determinación (R2). Los resultados del estudio muestran que el modelo LSTM fue el más preciso, alcanzando un R2 de 0,701, un RMSE de 0,087 y un MAE de 0,056. Esto lo convierte en la mejor opción para capturar dependencias temporales en los datos de series temporales complejas. En comparación, los modelos basados en transformadores demostraron tener potencial, pero no lograron la misma precisión que los modelos LSTM, especialmente en datos temporales más complicados. El estudio concluye que el LSTM es más eficaz en la predicción del ICA, equilibrando tanto la precisión como la eficiencia computacional, o que podría ayudar en intervenciones para mitigar la contaminación del aire.

Detalles del artículo

Sección
Artículo Científico

Referencias

J. Zhang and S. Li, “Air quality index forecast in beijing based on cnnlstm multi-model,” Chemosphere, vol. 308, p. 136180, 2022. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2022.136180

M. Ansari and M. Alam, “An intelligent iotcloud-based air pollution forecasting model using univariate time-series analysis,” Arabian Journal for Science and Engineering, vol. 49, no. 3, pp. 3135–3162, Mar 2024. [Online]. Available: https://doi.org/10.1007/s13369-023-07876-9

F. Cassano, A. Casale, P. Regina, L. Spadafina, and P. Sekulic, “A recurrent neural network approach to improve the air quality index prediction,” in Ambient Intelligence – Software and Applications –,10th International Symposium on Ambient Intelligence, P. Novais, J. Lloret, P. Chamoso, D. Carneiro, E. Navarro, and S. Omatu, Eds. Cham: Springer International Publishing, 2020, pp. 36–44. [Online]. Available: https://doi.org/10.1007/978-3-030-24097-4_5

K. Oguz and M. A. Pekin, Prediction of Air Pollution with Machine Learning Algorithms. 1–12: Turkish Journal of Science and Technology, 2024, vol. 19, no. 1. [Online]. Available: https://doi.org/10.55525/tjst.1224661

H. Jalali, F. Keynia, F. Amirteimoury, and A. Heydari, “A short-term air pollutant concentration forecasting method based on a hybrid neural network and metaheuristic optimization algorithms,” Sustainability, vol. 16, no. 11, 2024. [Online]. Available: https://doi.org/10.3390/su16114829

R. Patil, D. Dinde, and S. Powar, “A literature review on prediction of air quality index and forecasting ambient air pollutants using machine learning algorithms,” International Journal of Innovative Science and Research Technology, vol. 5, pp. 1148–1152, 09 2020. [Online]. Available: http://dx.doi.org/10.38124/IJISRT20AUG683

R. Hassan, M. Rahman, and A. Hamdan, “Assessment of air quality index (aqi) in riyadh, saudi arabia,” IOP Conference Series: Earth and Environmental Science, vol. 1026, no. 1, p. 012003, may 2022. [Online]. Available: https://dx.doi.org/10.1088/1755-1315/1026/1/012003

W.-T. Tsai and Y.-Q. Lin, “Trend analysis of air quality index (aqi) and greenhouse gas (ghg) emissions in taiwan and their regulatory countermeasures,” Environments, vol. 8, no. 4, 2021. [Online]. Available: https://doi.org/10.3390/environments8040029

G. Ravindiran, S. Rajamanickam, K. Kanagarathinam, G. Hayder, G. Janardhan, P. Arunkumar, S. Arunachalam, A. A. AlObaid, I. Warad, and S. K. Muniasamy, “Impact of air pollutants on climate change and prediction of air quality index using machine learning models,” Environmental Research, vol. 239, p. 117354, 2023. [Online]. Available: https://doi.org/10.1016/j.envres.2023.117354

N. P. Canh, W. Hao, and U. Wongchoti, “The impact of economic and financial activities on air quality: a chinese city perspective,” Environmental Science and Pollution Research, vol. 28, no. 7, pp. 8662–8680, Feb 2021. [Online]. Available: https://doi.org/10.1007/s11356-020-11227-8

T. Madan, S. Sagar, and D. Virmani, “Air quality prediction using machine learning algorithms –a review,” in 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), 2020, pp. 140–145. [Online]. Available: https://doi.org/10.1109/ICACCCN51052.2020.9362912

M. Kaur, D. Singh, M. Y. Jabarulla, V. Kumar, J. Kang, and H.-N. Lee, “Computational deep air quality prediction techniques: a systematic review,” Artificial Intelligence Review, vol. 56, no. 2, pp. 2053–2098, Nov 2023. [Online]. Available: https://doi.org/10.1007/s10462-023-10570-9

S. Senthivel and M. Chidambaranathan, “Machine learning approaches used for air quality forecast: A review,” Revue d’Intelligence Artificielle, vol. 36, no. 1, pp. 73–78, 2022. [Online]. Available: https://doi.org/10.18280/ria.360108

Q. Wu and H. Lin, “A novel optimalhybrid model for daily air quality index prediction considering air pollutant factors,” Science of The Total Environment, vol. 683, pp. 808–821, 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2019.05.288

Y. Xu, H. Liu, and Z. Duan, “A novel hybrid model for multi-step daily aqi forecasting driven by air pollution big data,” Air Quality, Atmosphere & Health, vol. 13, no. 2, pp. 197–207, Feb 2020. [Online]. Available: https://doi.org/10.1007/s11869-020-00795-w

Z. Zhao, J. Wu, F. Cai, S. Zhang, and Y.-G. Wang, “A statistical learning framework for spatial-temporal feature selection and application to air quality index forecasting,” Ecological Indicators, vol. 144, p. 109416, 2022. [Online]. Available: https://doi.org/10.1016/j.ecolind.2022.109416

J. A. Moscoso-López, D. Urda, J. González-Enrique, J. J. Ruiz-Aguilar, and I. Turias, “Hourly air quality index (aqi) forecasting using machine learning methods,” in 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020), 2021, pp. 123–132. [Online]. Available: https://upsalesiana.ec/ing33ar6r17

B. S. Chandar, P. Rajagopalan, and P. Ranganathan, “Short-term aqi forecasts using machine/ deep learning models for san francisco, ca,” in 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), 2023, pp. 0402–0411. [Online]. Available: https://doi.org/10.1109/CCWC57344.2023.10099064

J. Wang, P. Du, Y. Hao, X. Ma, T. Niu, and W. Yang, “An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting,” Journal of Environmental Management, vol. 255, p. 109855, 2020. [Online]. Available: https://doi.org/10.1016/j.jenvman.2019.109855

M. Méndez, M. G. Merayo, and M. Núñez, “Machine learning algorithms to forecast air quality: a survey,” Artificial Intelligence Review, vol. 56, no. 9, pp. 10 031–10 066, Sep 2023. [Online]. Available: https://doi.org/10.1007/s10462-023-10424-4

C. Ji, C. Zhang, L. Hua, H. Ma, M. S. Nazir, and T. Peng, “A multi-scale evolutionary deep learning model based on ceemdan, improved whale optimization algorithm, regularized extreme learning machine and lstm for aqi prediction,” Environmental Research, vol. 215, p. 114228, 2022. [Online]. Available: https://doi.org/10.1016/j.envres.2022.114228

R. Yan, J. Liao, J. Yang, W. Sun, M. Nong, and F. Li, “Multi-hour and multi-site air quality index forecasting in beijing using cnn, lstm, cnn-lstm, and spatiotemporal clustering,” Expert Systems with Applications, vol. 169, p. 114513, 2021. [Online]. Available: https://doi.org/10.1016/j.eswa.2020.114513

E. Hossain, M. A. U. Shariff, M. S. Hossain, and K. Andersson, “A novel deep learning approach to predict air quality index,” in Proceedings of International Conference on Trends in Computational and Cognitive Engineering, M. S. Kaiser, A. Bandyopadhyay, M. Mahmud, and K. Ray, Eds. Singapore: Springer Singapore, 2021, pp. 367–381. [Online]. Available: https://doi.org/10.1007/978-981-33-4673-4_29

Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Transformers in time series: a survey,” in Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, ser. IJCAI ’23, Macao, P.R.China, 2023. [Online]. Available: https://doi.org/10.24963/ijcai.2023/759

Y. Guo, T. Zhu, Z. Li, and C. Ni, “Auto-modal: Air-quality index forecasting with modal decomposition attention,” Sensors, vol. 22, no. 18, 2022. [Online]. Available: https://doi.org/10.3390/s22186953

S. Ma, J. He, J. He, Q. Feng, and Y. Bi, “Forecasting air quality index in yan’an using temporal encoded informer,” Expert Systems with Applications, vol. 255, p. 124868, 2024. [Online]. Available: https://doi.org/10.1016/j.eswa.2024.124868

J. Xie, J. Li, M. Zhu, and Q. Wang, “Multi-step air quality index forecasting based on parallel multi-input transformers,” in Pattern Recognition, H. Lu, M. Blumenstein, S.-B. Cho, C.-L. Liu, Y. Yagi, and T. Kamiya, Eds. Cham: Springer Nature Switzerland, 2023, pp. 52–63. [Online]. Available: https://doi.org/10.1007/978-3-031-47665-5_5

U.S. Environmental Protection Agency, Guideline for Reporting of Daily Air Quality – Air Quality Index (AQI). U.S. Environmental Protection Agency Research Triangle Park, North Carolina, 2006. [Online]. Available: https://upsalesiana.ec/ing33ar6r28

H. S. Hota, R. Handa, and A. K. Shrivas, “Time series data prediction using sliding window based rbf neural network,” in International Journal of Computational Intelligence Research, vol. 13, no. 5, 2017, pp. 1145–1156. [Online]. Available: https://upsalesiana.ec/ing33ar6r29

D. C. Yadav and S. Pal, “15 - me asure the superior functionality of machine intelligence in brain tumor disease prediction,” in Artificial Intelligence-Based Brain-Computer Interface, V. Bajaj and G. Sinha, Eds. Academic Press, 2022, pp. 353–368. [Online]. Available: https://doi.org/10.1016/B978-0-323-91197-9.00005-9

A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132306, 2020. [Online]. Available: https://doi.org/10.1016/j.physd.2019.132306

S. Hesaraki. (2023) Long short-term memory (lstm). Medium. Human Stories ideas. [Online]. Available: https://upsalesiana.ec/ing33ar6r32

Y. Mansar. (2021) How to use transformer networks to build a forecasting model. Medium. Human Stories ideas. [Online]. Available: https://upsalesiana.ec/ing33ar6r33

J. A. Segovia, J. F. Toaquiza, J. R. Llanos, and D. R. Rivas, “Meteorological variables forecasting system using machine learning and open-source software,” Electronics, vol. 12, no. 4, 2023. [Online]. Available: https://doi.org/10.3390/electronics12041007

M. Hammad Hasan. (2023) Tuning model hyperparameters with random searcha comparison with grid search. Medium. Human Stories ideas. [Online]. Available: https://upsalesiana.ec/ing33ar6r35

B. Cui, M. Liu, S. Li, Z. Jin, Y. Zeng, and X. Lin, “Deep learning methods for atmospheric pm2.5 prediction: A comparative study of transformer and cnn-lstmattention,” Atmospheric Pollution Research, vol. 14, no. 9, p. 101833, 2023. [Online]. Available: https://doi.org/10.1016/j.apr.2023.101833