Seguimiento del nivel de líquido de un sistema de tanques acoplado empleando control cuasi-lpv

Contenido principal del artículo

Pedro Teppa-Garran
Diego Muñoz-de Escalona
Javier Zambrano

Resumen

En este artículo se propone un procedimiento de programación de ganancias basado en un modelado cuasi-LPV de un sistema no lineal de tanques acoplados para seguir el nivel de líquido con error en estado estacionario nulo. Las no linealidades están representadas directamente por un vector de parámetros que varía dentro de un conjunto acotado por los límites físicos del nivel del sistema de tanques. Esto permite un modelado exacto del sistema no lineal utilizando un modelo lineal de parámetros variantes. Luego, se diseñan controladores lineales de realimentación de estado en los vértices extremos del conjunto acotado. El controlador global corresponde a un promedio ponderado de las contribuciones locales. Esta ponderación depende de los valores instantáneos del vector de parámetros. Para implementar el promedio ponderado de los controladores lineales, se proponen dos mecanismos de interpolación. Los resultados obtenidos muestran la efectividad del método.

Detalles del artículo

Sección
Artículo Científico

Referencias

R. Grygiel, R. Bieda, and M. Blachuta, “On significance of second-order dynamics for coupled tanks systems,” in 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), 2016, pp. 1016–1021. [Online]. Available: https://doi.org/10.1109/MMAR.2016.7575277

S. K. Singh, N. Katal, and S. G. Modani, “Multi-objective optimization of pid controller for coupled-tank liquid-level control system using genetic algorithm,” in Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012, B. V. Babu, A. Nagar, K. Deep, M. Pant, J. C. Bansal, K. Ray, and U. Gupta, Eds. New Delhi: Springer India, 2014, pp. 59–66. [Online]. Available: https://doi.org/10.1007/978-81-322-1602-5_7

D. L. Mute, S. R. Mahapatro, and K. K. Chaudhari, “Internal model based pi controller design for the coupled tank system: An experimental study,” in 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), 2016, pp. 72–76. [Online]. Available: https://doi.org/10.1109/CMI.2016.7413713

M. G. Stohy, H. S. Abbas, A.-H. M. El-Sayed, and A. G. Abo El-maged, “Parameter estimation and pi control for a water coupled tank system,” Journal of Advanced Engineering Trends, vol. 38, no. 2, pp. 147–159, 2020. [Online]. Available: https://doi.org/10.21608/jaet.2020.73062

L. Liang, “The application of fuzzy pid controller in coupled-tank liquid-level control system,” in 2011 International Conference on Electronics, Communications and Control (ICECC), 2011, pp. 2894–2897. [Online]. Available: https://doi.org/10.1109/ICECC.2011.6067785

A. Basci and A. Derdiyok, “Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system,” Measurement, vol. 91, pp. 12–18, 2016. [Online]. Available: https://doi.org/10.1016/j.measurement.2016.05.026

M. Essahafi, “Model predictive control (MPC) applied to coupled tank liquid level system,” CoRR, vol. abs/1404.1498, 2014. [Online]. Available: https://doi.org/10.48550/arXiv.1404.1498

J. Berberich, J. Köhler, M. A. Müller, and F. Allgower, “Data-driven model predictive control: closed-loop guarantees and experimental results,” at - Automatisierungstechnik, vol. 69, no. 7, pp. 608–618, Jun. 2021. [Online]. Available: http://dx.doi.org/10.1515/auto-2021-0024

J. Jiffy Anna, N. E. Jaffar, and F. Riya Mary, “Modelling and control of coupled tank liquid level system using backstepping method,” International Journal of Engineering Research and Technology, vol. 4, no. 6, pp. 667–671, 2015. [Online]. Available: http://dx.doi.org/10.17577/IJERTV4IS060710

J. Dai, B. Ren, and Q.-C. Zhong, “Uncertainty and disturbance estimator-based backstepping control for nonlinear systems with mismatched uncertainties and disturbances,” Journal of Dynamic Systems, Measurement, and Control, vol. 140, no. 12, Jul 2018, 121005. [Online]. Available: https://doi.org/10.1115/1.4040590

F. Abu Khadra and J. Abu Qudeiri, “Second order sliding mode control of the coupled tanks system,” Mathematical Problems in Engineering, vol. 2015, no. 1, p. 167852, 2015. [Online]. Available: https://doi.org/10.1155/2015/167852

K. K. Ayten and A. Dumlu, “Implementation of a pid type sliding-mode controller design based on fractional order calculus for industrial process no. 6, pp. 4–10, Dec. 2021. [Online]. Available: https://doi.org/10.5755/j02.eie.30306

M. Vashishth, L. S. Rai, and A. V. R. Kumar, “Liquid level control of coupled tank system using fractional pid controller,” 2013. [Online]. Available: https://upsalesiana.ec/ing33ar2r13

P. Roy and B. Krishna Roy, “Fractional order pi control applied to level control in coupled two tank mimo system with experimental validation,” Control Engineering Practice, vol. 48, pp. 119–135, 2016. [Online]. Available: https://doi.org/10.1016/j.conengprac.2016.01.002

M. H. Jali, A. Ibrahim, R. Ghazali, C. C. Soon, and A. R. Muhammad, “Robust Control Approach of SISO Coupled Tank System,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 1, 2021. [Online]. Available: http://dx.doi.org/10.14569/IJACSA.2021.0120123

P. Teppa, M. Bravo, and G. Garcia, “Control por rechazo activo de perturbaciones del nivel de líquido de un sistema de tanques acoplado,” Revista Faraute de Ciencia y Tecnología, vol. 7, no. 1, pp. 10–18, 2012. [Online]. Available: https://upsalesiana.ec/ing33ar2r16

P. Teppa Garran and G. Garcia, “Design of an optimal pid controller for a coupled tanks system employing adrc,” IEEE Latin America Transactions, vol. 15, no. 2, pp. 189–196, 2017. [Online]. Available: https://doi.org/10.1109/TLA.2017.7854611

P. Teppa Garran, M. Faggioni, and G. Garcia, “Optimal tracking in two-degree-of-freedom control systems: Coupled tank system,” Journal of Applied Research and Technology, vol. 21, no. 4, pp. 560–570, 2023. [Online]. Available: https://doi.org/10.22201/icat.24486736e.2023.21.4.2000

W. J. Rugh and J. S. Shamma, “Research on gain scheduling,” Automatica, vol. 36, no. 10, pp. 1401–1425, 2000. [Online]. Available: https://doi.org/10.1016/S0005-1098(00)00058-3

D. Rotondo, Advances in Gain-Scheduling and Fault Tolerant Control Techniques. Springer Cham, 2018. [Online]. Available: https://doi.org/10.1007/978-3-319-62902-5

G. S. X. Bombois, D. Ghosh and J. Huillery, “Lpv system identification for control using the local approach,” International Journal of Control, vol. 94, no. 2, pp. 390–410, 2021. [Online]. Available: https://doi.org/10.1080/00207179.2019.1596316

Z. GAO and J. FU, “Robust lpv modeling and control of aircraft flying through wind disturbance,” Chinese Journal of Aeronautics, vol. 32,

no. 7, pp. 1588–1602, 2019. [Online]. Available: https://doi.org/10.1016/j.cja.2019.03.029

S. Li, A.-T. Nguyen, T.-M. Guerra, and A. Kruszewski, “Reduced-order model based dynamic tracking for soft manipulators: Data-driven lpv modeling, control design and experimental results,” Control Engineering Practice, vol. 138, p. 105618, 2023. [Online]. Available: https://doi.org/10.1016/j.conengprac.2023.105618

R. Robles, A. Sala, and M. Bernal, “Performanceoriented quasi-lpv modeling of nonlinear systems,” International Journal of Robust and Nonlinear Control, vol. 29, no. 5, pp. 1230–1248, 2019. [Online]. Available: https://doi.org/10.1002/rnc.4444

P. Persson and K. Astrom, “Dominant pole design - a unified view of pid controller tuning,” IFAC Proceedings Volumes, vol. 25, no. 14, pp. 377–382, 1992. [Online]. Available: https://doi.org/10.1016/S1474-6670(17)50763-6

A. D. Mammadov, E. Dincel, and M. T. Söylemez, “Analytical design of discrete pi–pr controllers via dominant pole assignment,” ISA Transactions, vol. 123, pp. 312–322, 2022. [Online]. Available: https://doi.org/10.1016/j.isatra.2021.05.038

P. Teppa-Garrán and J. Andrade-Da Silva, “An analytical interpolation approach for gain scheduling control of linear parameter varying systems,” Ciencia e Ingeniería, vol. 30, no. 1, pp. 93–101, 2008. [Online]. Available: https://upsalesiana.ec/ing33ar2r27

W. Tan, A. Packard, and G. Balas, “Quasi-lpv modeling and lpv control of a generic missile,” in Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), vol. 5, 2000, pp. 3692–3696. [Online]. Available: https://doi.org/10.1109/ACC.2000.879259

G. Vinco, S. Theodoulis, O. Sename, and G. Strub, “Quasi-lpv modeling of guided projectile pitch dynamics through state transformation technique,” IFAC-PapersOnLine, vol. 55, no. 35, pp. 43–48, 2022, 5th IFAC Workshop on Linear Parameter Varying Systems LPVS 2022. [Online]. Available: https://doi.org/10.1016/j.ifacol.2022.11.288

Z. He and L. Zhao, “Quadrotor trajectory tracking based on quasi-lpv system and internal model control,” Mathematical Problems in Engineering, vol. 2015, no. 1, p. 857291, 2015. [Online]. Available: https://doi.org/10.1155/2015/857291

P. S. Cisneros, A. Sridharan, and H. Werner, “Constrained predictive control of a robotic manipulator using quasi-lpv representations,” IFAC-PapersOnLine, vol. 51, no. 26, pp. 118–123, 2018, 2nd IFAC Workshop on Linear Parameter Varying Systems LPVS 2018. [Online]. Available: https://doi.org/10.1016/j.ifacol.2018.11.158

H. Xie, L. Dai, Y. Lu, and Y. Xia, “Disturbance rejection mpc framework for inputaffine nonlinear systems,” IEEE Transactions on Automatic Control, vol. 67, no. 12, pp. 6595–6610, 2022. [Online]. Available: https://doi.org/10.1109/TAC.2021.3133376

J. Stefanovski, “Feedback affinization of nonlinear control systems,” Systems & Control Letters, vol. 46, no. 3, pp. 207–217, 2002. [Online]. Available: https://doi.org/10.1016/S0167-6911(02)00136-6

J. Apkarian, Coupled water tank experiments manual. Quanser Consulting Advanced Teaching Systems, 1999. [Online]. Available: https://upsalesiana.ec/ing33ar2r34

R. C. Dorf and R. H. Bishop, Modern Control Systems. Prentice Hall, 2008. [Online]. Available: https://upsalesiana.ec/ing33ar2r35

A. Bartlett, C. Hollot, and H. Lin, “Root locations of an entire polytope of polynomials: It suffices to check the edges,” in 1987 American Control Conference, 1987, pp. 1611–1616. [Online]. Available: https://doi.org/10.23919/ACC.1987.4789571