Parches de contacto de neumáticos radiales con diferentes relaciones de longitud y anchura bajo carga estática

Contenido principal del artículo

Fengliang Qiao
Zhaojie Shen
Yuxia Kang

Resumen

La relación de aspecto de los neumáticos influye significativamente en el área de contacto de la banda de rodadura, afectando el rendimiento de conducción y manejo del vehículo. Este estudio analiza el efecto de neumáticos radiales con diferentes relaciones de longitud y diámetro en las manchas de contacto bajo diversas cargas o presiones de inflado. Se evaluaron el tamaño, forma y distribución de presión en neumáticos con relaciones de aspecto de 55 %, 60 %, 65 %, 70 % y 75 %, mediante cinco modelos de elementos finitos. El modelo 205/55R16 fue validado experimentalmente. Los resultados indican que, al aumentar la relación de aspecto, la longitud de contacto a lo largo del eje del neumático disminuye, mientras que la anchura en la dirección de rodadura aumenta. Bajo la misma carga estática, el área de contacto varía poco entre relaciones de aspecto diferentes. Sin embargo, con mayor relación longitud-anchura, el ancho de la banda de rodadura disminuye y la longitud aumenta. Asimismo, la forma de la mancha de contacto cambia de silla de montar a tambor de cintura. Los máximos valores de tensión de contacto normal se localizan en los hombros para relaciones de aspecto de 55 %, 60 % y 65 %, y en el centro de la banda para relaciones de 70 % y 75 %. La principal influencia de la relación de aspecto radica en el tamaño del contacto.

Detalles del artículo

Sección
Artículo Científico

Referencias

M. Abe, Vehicle Handling Dynamics (Second Edition, second edition ed., M. Abe, Ed. Butterworth-Heinemann, 2015. [Online]. Available: https://doi.org/10.1016/B978-0-08-100390-9.01001-0

Y. Suo, W. Yang, D. Lu, Y. Zhang, and M. Che, “Analysis of camber-caused asymmetric characteristics using finite element method and pure camber semi-empirical modeling,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, p.09544070241272802, 2024. [Online]. Available: https://doi.org/10.1177/09544070241272802

F. B. Luigi Romano and B. Jacobson, “An extended lugre-brush tyre model for large camber angles and turning speeds,” Vehicle System Dynamics, vol. 61, no. 6, pp. 1674–1706, 2023. [Online]. Available: https://doi.org/10.1080/00423114.2022.2086887

Z. Shi, Y. M. Mohammed, N. Uddin, and G. Chen, “A vehicle-bridge interaction model considering contact patch size and vehicle self-generated excitation – a theoretical study,” Engineering Structures, vol. 298, p. 117079, 2024. [Online]. Available: https://doi.org/10.1016/j.engstruct.2023.117079

C. Suvanjumrat and J. Phromjan, “The contact patch characterization of various solid tire testing methods by finite element analysis and experiment,” International Journal of Geomate, vol. 19, no. 76, pp. 25–32, 2020. [Online]. Available: https://doi.org/10.21660/2020.76.9134

N. Ryzí, R. StoÄ ek, J. Maloch, and M. StÄ›niÄ ka, “How does heat generation affect the cut and chip wear of rubber?” Polymer Bulletin, vol. 81, no. 18, pp. 17 213–17 232, Dec 2024. [Online]. Available: https://doi.org/10.1007/s00289-024-05498-1

Y. Nakajima and S. Hidano, “Theoretical tire model considering two-dimensional contact patch for force and moment,” Tire Science and Technology, vol. 50, no. 1, pp. 27–60, 07 2021. [Online]. Available: https://doi.org/10.2346/tire.21.20005

J. Prakash, M. Vignati, and E. Sabbioni, “An exponential decay model for decaying of contact patch friction steering moment with rolling speed,” Tire Science and Technology, vol. 52, no. 1, pp. 34–50, 03 2024. [Online]. Available: https://doi.org/10.2346/tire.23.21017

J. Bastiaan, A. Chawan, W. Eum, K. Alipour, F. Rouhollahi, M. Behroozi, and J. Baqersad, “Intelligent tire prototype in longitudinal slip operating conditions,” Sensors, vol. 24, no. 9, 2024. [Online]. Available: https://doi.org/10.3390/s24092681

J. M. Conradie, P. S. Els, and P. S. Heyns, “Finite element modelling of off-road tyres for radial tyre model parameterization,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 230, no. 4, pp. 564–578, 2016. [Online]. Available: https://doi.org/10.1177/0954407015590018

M. Zhang, H.-J. Unrau, M. Gießler, and F. Gauterin, “A detailed tire tread friction model considering dynamic friction states,” Tribology International, vol. 193, p. 109342, 2024. [Online]. Available: https://doi.org/10.1016/j.triboint.2024.109342

Z. Liu, F. Wang, Z. Cai, Y. Wei, and S. Marburg, “A novel theoretical model of tire in-plane dynamics on uneven roads and its experimental validation,” Mechanical Systems and Signal Processing, vol. 186, p. 109854, 2023. [Online]. Available: https://doi.org/10.1016/j.ymssp.2022.109854

P. Millan and J. Ambrósio, “Tire–road contact modelling for multibody simulations with regularised road and enhanced ua tire models,” Multibody System Dynamics, Apr 2024. [Online]. Available: https://doi.org/10.1007/s11044-024-09987-z

Guo, Konghui, Chen, Ping, Xu, Nan, Yang, Chao, and Li, Fei, “Tire side force characteristics with the coupling effect of vertical load and inflation pressure,” SAE International Journal of Vehicle Dynamics, Stability, and NVH, vol. 3, no. 1, pp. 19–30, nov 2018. [Online]. Available: https://doi.org/10.4271/10-03-01-0002

P. Riehm, H.-J. Unrau, F. Gauterin, S. Torbrügge, and B. Wies, “3d brush model to predict longitudinal tyre characteristics,” Vehicle System Dynamics, vol. 57, no. 1, pp. 17–43, 2019. [Online]. Available: https://doi.org/10.1080/00423114.2018.1447135

F. Alobaid and S. Taheri, “The modified in-plane rigid-elastic-coupled tire modal model: dynamic response to short wavelength road profiles,” Vehicle System Dynamics, vol. 62, no. 12, pp. 3076–3097, 2024. [Online]. Available: https://doi.org/10.1080/00423114.2024.2316683

H. Fathi, Z. El-Sayegh, and M. H. R. Ghoreishy, “Prediction of rolling resistance and wheel force for a passenger car tire: A comparative study on the use of different material models and numerical approaches,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, p. 09544070241244556, 2024. [Online]. Available: https://doi.org/10.1177/09544070241244556

X. Gao, Y. Wang, W. Fan, Z. Long, X. Li, X. Yue, Y. Liu, Y. Yan, and J. Wang, “Modeling and experimental verification of torsional deformation constitutive model of tread rubber based on digital image correlation,” Experimental Techniques, vol. 47, no. 4, pp. 749–765, Aug 2023. [Online]. Available: https://doi.org/10.1007/s40799-022-00583-4

S. K. Pradhan, A. S. Rathore, S. Sehgal, P. Sonia, G. Ramu, and C. Prakash, “Development and validation of test rig for experimental analysis of contact behavior between rail wheel-rail and rubber tire-rail in road cum rail vehicles,” Indian Journal of Engineering and Materials Sciences (IJEMS), vol. 31, no. 1, pp. 84–92, 2024. [Online]. Available: https://doi.org/10.56042/ijems.v31i1.986

J. Guan, X. Zhou, L. Liu, M. Ran, and Y. Yan, “Investigation of tri-axial stress sensing and measuring technology for tire-pavement contact surface,” Coatings, vol. 12, no. 4, 2022. [Online]. Available: https://doi.org/10.3390/coatings12040491

T. Saisaengtham, J. Phromjan, R. Rugsaj, S. Phakdee, and C. Suvanjumrat, “Pavement-tire contact patch effects on air volume using finite element method,” International Journal of Geomate, vol. 26, no. 113, pp. 50–57, 2024. [Online]. Available: https://doi.org/10.21660/2024.113.g13179

C. Liang, D. Zhu, G. Wang, and M. Shan, “Experimental study on tire-road dynamic contact pressure distribution using ftir imaging,” International Journal of Automotive Technology, vol. 22, no. 5, pp. 1305–1317, Oct 2021. [Online]. Available: https://doi.org/10.1007/s12239-021-0114-3

N. Xu, H. Askari, Y. Huang, J. Zhou, and A. Khajepour, “Tire force estimation in intelligent tires using machine learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 4, pp. 3565–3574, 2022. [Online]. Available: https://doi.org/10.1109/TITS.2020.3038155

N. Xu, J. Zhou, B. H. G. Barbosa, H. Askari, and A. Khajepour, “A soft sensor for estimating tire cornering properties for intelligent tires,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 10, pp. 6056–6066, 2023. [Online]. Available: https://doi.org/10.1109/TSMC.2023.3281474

P. Tomaraee, A. Mardani, A. Mohebbi, and H. Taghavifar, “Relationships among the contact patch length and width, the tire deflection and the rolling resistance of a free-running wheel in a soil bin facility,” Spanish Journal of Agricultural Research, vol. 13, no. 2, p. e0211, May 2015. [Online]. Available: https://doi.org/10.5424/sjar/2015132-5245

A. Swami, C. Liu, J. Kubenz, G. Prokop, and A. K. Pandey, “Experimental study on tire contact patch characteristics for vehicle handling with enhanced optical measuring system,” SAE International Journal of Vehicle Dynamics Stability and NVH, vol. 5, no. 3, pp. 333–350, 2021. [Online]. Available: https://doi.org/10.4271/10-05-03-0023

Y. Xie and Q. Yang, “Tyre–pavement contact stress distribution considering tyre types,” Road Materials and Pavement Design, vol. 20, no. 8, pp. 1899–1911, 2019. [Online]. Available: https://doi.org/10.1080/14680629.2018.1473285

Y. Wang, Y. Lu, and C. Si, “Tirepavement coupling dynamic simulation under tire high-speed-rolling condition,” International Journal of Simulation Modelling, vol. 15, pp. 236–248, 06 2016. [Online]. Available: http://dx.doi.org/10.2507/IJSIMM15(2)4.332

Y. Oubahdou, E.-R. Wallace, P. Reynaud, B. Picoux, J. Dopeux, C. Petit, and D. Nélias, “Effect of the tire – pavement contact at the surface layer when the tire is tilted in bend,” Construction and Building Materials, vol. 305, p. 124765, 2021. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2021.124765

J. A. Hernandez and I. L. Al-Qadi, “Tire–pavement interaction modelling: hyperelastic tire and elastic pavement,” Road Materials and Pavement Design, vol. 18, no. 5, pp. 1067–1083, 2017. [Online]. Available: https://doi.org/10.1080/14680629.2016.1206485

X. Liu and I. L. Al-Qadi, “Three-dimensional tire-pavement contact stresses prediction by deep learning approach,” International Journal of Pavement Engineering, vol. 23, no. 14, pp. 4991–5002, 2022. [Online]. Available: https://doi.org/10.1080/10298436.2021.1990288

J. Ye, Z. Zhang, J. Jin, R. Su, and B. Huang, “Estimation of tire-road friction coefficient with adaptive tire stiffness based on rcsckf,” Nonlinear Dynamics, vol. 112, no. 2, pp. 945–960, Jan 2024. [Online]. Available: https://doi.org/10.1007/s11071-023-09088-0

Sun, Lihong, Lu, Dang, and Li, Bing, “Analysis and prediction of tire traction properties for different inflation pressures based on vertical deflection control method,” SAE International Journal of Vehicle Dynamics, Stability, and NVH, vol. 5, no. 3, pp. 307–315, apr 2021. [Online]. Available: https://doi.org/10.4271/10-05-03-0021

Z. Gong, Y. Miao, W. Li, W. Yu, and L. Wang, “Analysis of tyre-pavement contact behaviour of heavy truck in full-scale test,” International Journal of Pavement Engineering, vol. 24, no. 1, p. 2235630, 2023. [Online]. Available: https://doi.org/10.1080/10298436.2023.2235630

B. Zheng, J. Chen, R. Zhao, J. Tang, R. Tian, S. Zhu, and X. Huang, “Analysis of contact behaviour on patterned tire-asphalt pavement with 3-d fem contact model,” International Journal of Pavement Engineering, vol. 23, no. 2, pp. 171–186, 2022. [Online]. Available: https://doi.org/10.1080/10298436.2020.1736294

S. T. Pooya Behroozinia and R. Mirzaeifar, “An investigation of intelligent tires using multiscale modeling of cord-rubber composites,” Mechanics Based Design of Structures and Machines, vol. 46, no. 2, pp. 168–183, 2018. [Online]. Available: https://doi.org/10.1080/15397734.2017.1321488

I. L. A.-Q. Hao Wang and I. Stanciulescu, “Simulation of tyre–pavement interaction for predicting contact stresses at static and various rolling conditions,” International Journal of Pavement Engineering, vol. 13, no. 4, pp. 310–321, 2012. [Online]. Available: https://doi.org/10.1080/10298436.2011.565767

T. Gu, B. Li, Z. Quan, S. Bei, G. Yin, J. Guo, X. Zhou, and X. Han, “The vertical force estimation algorithm based on smart tire technology,” World Electric Vehicle Journal, vol. 13, no. 6, 2022. [Online]. Available: https://doi.org/10.3390/wevj13060104

P. Rosca, M. L. Marmureanu, T. V. Tiganescu, C. M. Pîrvulescu, I. M. Bîndac, and C. Doru, “Determination of tyre-ground interaction parameters through image processing in matlab,” International Journal of Heavy Vehicle Systems, vol. 28, no. 5, pp. 630–649, 2021. [Online]. Available: https://doi.org/10.1504/IJHVS.2021.120913

H. B. Huang, X. D. Yu, J. P. Liu, and Z. Yao, “Asymmetry investigation on radial tire contact pressure distribution,” Chinese Journal of System Simulation, vol. 30, no. 8, pp. 2991–2998, 2018. [Online]. Available: https://doi.org/10.16182/j.issn1004731x.joss.201808021

T. Doi and K. Ikeda, “Effect of tire tread pattern on groove wander of motorcycles,” Tire Science and Technology, vol. 13, no. 3, pp. 147–153, 07 1985. [Online]. Available: https://doi.org/10.2346/1.2150992

C. Wang, H. Huang, X. Chen, and J. Liu, “The influence of the contact features on the tyre wear in steady-state conditions,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 231, no. 10, pp. 1326–1339, 2017. [Online]. Available: https://doi.org/10.1177/0954407016671462