Evaluación de AIoT en modelos computacionales en la nube y en el borde aplicado a la detección de mascarillas

Contenido principal del artículo

Resumen

La COVID-19 ha provocado graves daños a la salud: centenas de millones de personas infectadas y varios millones de fallecidos en el mundo. Los programas de vacunación de cada Gobierno han influido en el decaimiento de estos índices, pero con la aparición de nuevas mutaciones del coronavirus más contagiosas, la preocupación sobre la efectividad de las vacunas se hace presente. Frente a esta situación el uso de mascarillas sigue siendo eficaz para prevenir la transmisión y contagio de la COVID-19. Lo que ha generado una creciente demanda de servicios de detección automática de mascarillas, que permita recordar a las personas la importancia del empleo de estas. En este trabajo se plantea un análisis del rendimiento de un sistema AIoT para la detección del uso correcto, incorrecto y sin mascarilla basado en dos modelos computacionales de Cloud y Edge, con la finalidad de determinar qué modelo se adecua mejor en un entorno real (interior y exterior) sobre la base de la confiabilidad del algoritmo, uso de recursos computacionales y tiempo de respuesta. Los resultados experimentales demuestran que el modelo computacional Edge presentó un mejor desempeño en comparación con el Cloud.

Detalles del artículo

Sección
Número Especial: Uso de técnicas de ingeniería para combatir COVID-19

Referencias

[1] R. Aragón Nogales, I. Vargas Almanza, and M. G. Miranda Novales, “COVID-19 por SARS-CoV-2: la nueva emergencia de salud,” Revista Mexicana de Pediatría, vol. 86, pp. 213–218, 2020. [Online]. Available: https://dx.doi.org/10.35366/91871
[2] WHO, “Listings of WHO’s response to COVID-19,” World Health Organization. [Online]. Available: https://bit.ly/3mAZ6LH
[3] ——, “Vías de transmisión del virus de la COVID-19: Repercusiones para las recomendaciones relativas a las precauciones en materia de prevención y control de las infecciones.” [Online]. Available: https://bit.ly/3epu4Sq
[4] OMS, “Who coronavirus (COVID-19) dashboard,” 2021. [Online]. Available: https://bit.ly/3mDAO3r
[5] OPS, “Vacunas contra la COVID-19,” 2020. [Online]. Available: https://bit.ly/3z0JGFs
[6] H. Ritchie, E. Mathieu, L. Rodés-Guirao, C. Appel, C. Giattino, E. Ortiz-Ospina, J. Hasell, B. Macdonald, D. Beltekian, M. Roser, and et al., “Coronavirus (COVID-19) vaccinations - statistics and research,” 2020. [Online]. Available: https://bit.ly/3sEmtro
[7] C. Costa and C. Tombesi, “COVID-19: Cuánto tiempo se demoró en encontrar la vacuna para algunas enfermedades (y por qué este coronavirus es un caso histórico),” 2020. [Online]. Available: https://bbc.in/3pEV0Eh
[8] “Comparative research grant,” Anthropology News, vol. 36, no. 8, pp. 43–43, 1995. [Online]. Available: https://doi.org/10.1111/an.1995.36.8.43.1
[9] S. S. Bibak Sareshkeh, E. Magli, and P. Dal Zovo, “Combined ict technologies for supervision of complex operations in resilient communities,” Master’s thesis, 2020. [Online]. Available: https://bit.ly/3HaioPE
[10] I. Santos-González, A. Rivero-García, J. Molina-Gil, and P. Caballero-Gil, Implementation and Analysis of Real-Time Streaming Protocols, vol. 17, no. 4, 2017. [Online]. Available: https://doi.org/10.3390/s17040846
[11] A. Nurrohman and M. Abdurohman, “High performance streaming based on H264 and real time messaging protocol (RTMP),” in 2018 6th International Conference on Information and Communication Technology (ICoICT), 2018, pp. 174–177. [Online]. Available: https://doi.org/10.1109/ICoICT.2018.8528770
[12] S. Basu, “What are video streaming codecs & container formats: Muvi live server,” 2020. [Online]. Available: https://bit.ly/3ErJPCZ
[13] J. S. Katz, “Aiot: Thoughts on artificial intelligence and the internet of things,” IEEE Internet if Things, 2019. [Online]. Available: https://bit.ly/3sBwGEZ
[14] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” ArXiv, vol. abs/1804.02767, 2018. [Online]. Available: https://bit.ly/3psJLyp
[15] A. M. Porcelli, “La inteligencia artificial y la robótica: sus dilemas sociales, éticos y jurídicos,” Derecho global. Estudios sobre derecho y justicia, vol. 6, pp. 49–105, 2020. [Online]. Available: https://doi.org/10.32870/dgedj.v6i16.286
[16] X. Jiang, T. Gao, Z. Zhu, and Y. Zhao, “Real-time face mask detection method based on YOLOv3,” Electronics, vol. 10, no. 7, p. 837, 2021. [Online]. Available: https://doi.org/10.3390/electronics10070837
[17] S. Sethi, M. Kathuria, and T. Kaushik, “Face mask detection using deep learning: An approach to reduce risk of coronavirus spread,” Journal of Biomedical Informatics, vol. 120, p. 103848, 2021. [Online]. Available: https://doi.org/10.1016/j.jbi.2021.103848
[18] D. González Dondo, J. A. Redolfi, R. G. Araguás, and D. García, “Application of deep-learning methods to real time face mask detection,” IEEE Latin America Transactions, vol. 19, no. 6, pp. 994–1001, 2021. [Online]. Available: https://bit.ly/3pw7DkM
[19] S. Sethi, M. Kathuria, and T. Kaushik, “A real-time integrated face mask detector to curtail spread of coronavirus,” Computer Modeling in Engineering & Sciences, vol. 127, no. 2, pp. 389–409, 2021. [Online]. Available: https://doi.org/10.32604/cmes.2021.014478
[20] I. Vich, “Medical masks dataset images tfrecords,” Kaggle, 2020. [Online]. Available: https://bit.ly/3er0tb8
[21] S. Ge, J. Li, Q. Ye, and Z. Luo, “MAFA,” 2018. [Online]. Available: https://bit.ly/3FBC52o
[22] S. Yadav and S. Shukla, “Analysis of k-Fold Cross-validation over hold-out validation on colossal datasets for quality classification,” in 2016 IEEE 6th International Conference on Advanced Computing (IACC), 2016, pp. 78–83. [Online]. Available: https://doi.org/10.1109/IACC.2016.25
[23] E. Allibhai, “Holdout vs. Cross-validation in machine learning.” 2018. [Online]. Available: https://bit.ly/3z2TbE0
[24] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2021. [Online]. Available: https://doi.org/10.1109/JPROC.2020.3004555
[25] R. K. Indla, “An overview on amazon rekognition technology,” 2021.
[26] L. Herrera-Izquierdo and M. Grob, “A performance evaluation between docker container and virtual machines in cloud computing architectures,” Maskana, vol. 8, pp. 127–133, 2017. [Online]. Available: https://bit.ly/3z12oNf
[27] NVIDIA, “Jetpack sdk 4.5.1 archive,” 2021. [Online]. Available: https://bit.ly/32BxzT1
[28] Python, “Welcome to python.org,” 2021. [Online]. Available: https://bit.ly/3qqTd4Q
[29] NVIDIA, “Quickstart guide - deepstream 6.0 release documentation,” 2021. [Online]. Available: https://bit.ly/3sDTa8s
[30] ProminenceAI, “Prominenceai/deepstreamservices-library: A shared library of ondemand deepstream pipeline services for Python and C/C++,” GitHub. [Online]. Available: https://bit.ly/3pyxM2y
[31] MongoDB, “The application data platform,” MongoDB. [Online]. Available: https://bit.ly/3qrRsUL
[32] N. Craig-Wood, “Rclone syncs your files to cloud storage,” 2014. [Online]. Available: https://bit.ly/3JlPNsu
[33] Docker, “Empowering app development for developers,” 2020. [Online]. Available: https://www.docker.com/
[34] A. Thakur, C. Clauss, C. Hollinger, V. Boivin, B. Lowe, M. Schoentgen, and R. Bouckenooghe, “abhiTronix/vidgear: VidGear v0.2.3,” Oct. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.5602375
[35] OpenCV. (2021) Opencv courses holiday sale. [Online]. Available: https://bit.ly/3ezvAS1
[36] Google Developers, “Firebase,” 2020. [Online]. Available: https://bit.ly/3JinCeh
[37] Pallets, “Flask web development, one drop at a time,” Pallet, 2010. [Online]. Available: https://bit.ly/3Hemy9h
[38] J. T. Mark Otto. (2021) Build fast, responsive sites with bootstrap. [Online]. Available: https://bit.ly/32Nl5rK
[39] Google. (2021) Colaboratory. Google Research. [Online]. Available: https://bit.ly/3EC3mk0
[40] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Springer International Publishing, 2014, pp. 740–755. [Online]. Available: https://bit.ly/3sxpZUu
[41] M. S. Aslanpour, S. S. Gill, and A. N. Toosi, “Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and standards for future research.” Internet of Things, vol. 12, p. 100273, 2020. [Online]. Available: https://doi.org/10.1016/j.iot.2020.100273
[42] M. Ashouri, F. Lorig, P. Davidsson, and R. Spalazzese, “Edge computing simulators for iot system design: An analysis of qualities and metrics,” Future Internet, vol. 11, no. 11, p. 235, 2019. [Online]. Available: https://doi.org/10.3390/fi11110235
[43] F. Oliveira-Teixeira, T. P. Donadon-Homem, and A. Pereira-Junior, “Aplicación de inteligencia artificial para monitorear el uso de mascarillas de protección,” Revista Científica General José María Córdova, vol. 19, no. 33, pp. 205–222, 2021. [Online]. Available: https://doi.org/10.21830/19006586.725