Control del estrés térmico agudo en pollos de engorde Línea Ross 308 mediante la inclusión de Betaína en el agua de bebida y su análisis económico en la parroquia El Quinche, Ecuador.

Contenido principal del artículo

Resumen

Este estudio evaluó diferentes concentraciones de inclusión de betaína suministrada en el agua de bebida para el control del estrés térmico agudo en pollos de engorde de la línea Ross 308 y su efecto sobre los parámetros productivos y el beneficio económico en dos ciclos de producción. El experimento se inició en dos galpones con 2672 y 2304 aves que fueron distribuidas en la tercera semana en 16 cuadrantes con cuatro pseudo-réplicas de 167 y 144 aves en cada cuadrante. Tres tratamientos de betaína (1,5; 2 y 2,5 g/l) y un tratamiento control (sin betaína) distribuidos al azar se suministraron en el agua de bebida durante la última semana de crianza (séptima semana). El suministro de 1,5 g/l (T2) de betaína mostró un mayor peso promedio (2441 ± 52,2 g) y menor mortalidad (2,96%) durante el primer ciclo, mientras que el T4 (2,5g/l) mostró el mayor peso promedio (2925 ± 60,2 g) y menor mortalidad (3,43%) durante el segundo ciclo. Todos los tratamientos revelaron un estrés térmico agudo sin diferencias significativas en la temperatura corporal. En el análisis económico, los T2 y T4 mostraron los ingresos netos más altos de alrededor del 60,44% y 67,36%, con una relación costo-beneficio de 1,42 y 1,93 durante el primer y segundo ciclo, respectivamente. Este estudio sugiere el suministro de betaína entre 1,5-2,5 g/l en el agua de bebida durante la última semana de crianza en zonas mediterráneas junto con buenas prácticas de manejo para mitigar el estrés térmico agudo en los pollos de engorde Línea Ross 308.

Detalles del artículo

Sección
Artículo Científico

Referencias

Aengwanich, W. (2007). Effects of High Environmental Temperature on the Body Temperature of Thai Indigenous, Thai Indigenous Crossbred and Broiler Chickens. Asian Journal of Poultry Science, 2(1):48-52. Online: https://scialert.net/abstract/?doi=ajpsaj.2008.48.52

Ahmed, M., Ismail, Z., and Abdel-Wareth, A. (2018). Application of betaine as feed additives in poultry nutrition – a review. Journal of Experimental and Applied Animal Science, 2(3):266-272. Online: https://doi.org/10.20454/jeaas.2018.1428

Akbarian, A., Michiels, J., Degoote, J., Majdeddin, M., Golian, A., and de Smet.S. (2016). Association between heat stress and oxidative stress in poultry; mitochondria dysfunction and dietary interventions with phytochemicals. Journal of Animal Science and Biotechnology, 7-37. Online: https://doi.org/10.1186/s40104-016-0097-5

Alagawan, M., Farag, M., Abd El-Hack, M., Patra, A. (2017). Heat Stress: Effects on Productive and Reproductive Performance of Quality. World Poultry Science Journal, 73:747–756. Online: https://doi.org/10.1017/S0043933917000782

Amer, S., Mohamed, A., Gharib, H., and El-Eraky, W. (2018). Impact of Betaine Supplementation on the Growth Performance, Tonic Immobility, and Some Blood Chemistry of Broiler Chickens Fed Normal and Low Energy Diets During Natural Summer Stress. Zagazig Veterinary Journal, 46(1):37-50. Online: doi: 10.21608/zvjz.2018.7622

Araujo, F., Garcia, R., Naas, I., Lima, N., Silva, R., and Caldara, F. (2015). Broiler Surface Temperature and Behavioral Response under Two Different Light Sources. Brazilian Journal of Poultry Science, 17(2):219-226. Online: https://doi.org/10.1590/1516-635x1702219-226

Awad, L., Ibrahim, A., Fahim, H., and Beshara, M. (2014). Effect of dietary betaine supple mentation on Growth performance and carcass traits of domyati ducks under summer conditions. Egyptian Poultry Science Journa,l 34:1019-1038. Online: doi: 10.21608/epsj.2014.5356

Baracho, M., Nass, I., Lima, N., Cordeiro, A., and Moura, D. (2019). Factors Affecting Broiler Production: A Meta-Analysis. Brazilian Journal of Poultry Science, 21(3):1–10. Online: https://doi.org/10.1590/1806-9061-2019-1052

Baracho, M., Nass, I., Nascimento, G., Cassiano, J., and Oliveira, K. (2011). Surface Temperature Distribution in Broiler Houses. Brazilian Journal of Poultry Science, 13(3):177–182. Online: https://doi.org/10.1590/S1516-635X2011000300003

Barzegar, S.,Wu, S., Choet, M., and Swick, R. (20209. Factors affecting energy metabolism and evaluating net energy of poultry feed. Poultry Science, 99:487–498. Online: https://doi.org/10.3382/ps/pez554

Bhadauria, P., Keshava, Mamgai, P., Murai, A., and Jadoun, Y. (2017). Management of heat stress in Poultry production system. ICAR- Agricultural Technology Application Research Institute, Zone-1, Ludhiana-141004 (INDIA).

Borges, S., Fischer Da Silva, A., and Maiorka, A. (2007). Acid-base balance in broilers. World's Poultry Science Journal, 63:73-81. Online: https://doi.org/10.1017/S0043933907001286

Chen, R., Zhuang, S., Chen, Y., Cheng, Y., Wen, C., and Zhou, Y. (2018). Betaine improves the Growth performance and muscle Growth of partridge shank broiler chickens via altering myogenic gene expression and insulin-like Growth factor-1 signaling path-way. Poultry Science, 97:4297–4305. Online: doi: 10.3382/ps/pey303

Da Silva, T., Pandorfi, H., and Guiselini, C. (2015). Energy Balance the Poultry-Shed System and its Influence on Broiler Performance. Journal of the Brazilian Association of Agricultural Engineering, 35(4):613–624. Online: https://doi.org/10.1590/1809-4430-Eng.Agric.v35n4p613-624/2015

Dalólio, F., Albino, L., Lima, H., da Silva, J., and Moreira, J. (2015). Heat stress and vitamin E in diets for broilers as a mitigating measure. Acta Scientiarum. Animal Sciences, 37(4):419-427. Online: https://doi.org/10.4025/actascianimsci.v37i4.27456

Delles, R., Xiong, Y., True, A., Ao, T., and Dawson, K. (2014). Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity. Poultry Science, 93:1561-1570. Online: https://doi.org/10.3382/ps.2013-03682

Eklund, M., Bauer, E., Wamatu, J., and Mosenthin, R. (2005). Potential nutritional and physiological functions of betaine in livestock. Nutrition Research Reviews, 18:31-48. Online: https://doi.org/10.1079/NRR200493

El-Shinnawy, A. (2015). Effect of betaine supplementation to methionine adequate diet on growth performance, carcass characteristics, some blood parameters and economic efficiency of broilers. Journal of Animal and Poultry Production, Mansoura University 1:27-41. Online:https://doi.org/10.21608/JAPPMU.2016.52726

Finisin, V., and Kavtarashvili, A. (2015). Heat stress in Poultry. II. Methods and Techniques for Prevention and Alleviation. Agricultural Biology, 50(4):431–443. Online:https://doi.org/10.15389/agrobiology.2015.4.431rus

Harms, H., and Russell, G. (2002). Betaine Does Not Improve Performance of Laying Hens when the Diet Contains Adequate Choline. Poultry Science, 81:99–101. Online: doi: 10.1093/ps/81.1.99. PMID: 11885908.

Hassan, R., Attia, Y., and El-Ganzory, E. (2005). Growth, Carcass Quality and Serum Constituents of Slow Growing Chicks as Affected by Betaine Addition to Diets Containing 1. Different Levels of Choline. International Journal of Poultry Science, 4(11): 840-850. Online:https://scialert.net/abstract/?doi=ijps.2005.840.850

He, S., Zhao, S., Dai, S., Liu, S., Bokhari, S. (2015). Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Animal Science Journal, 86:897–903. Online: doi: 10.1111/asj.12372

Honarbakhsh, S., Zaghari, M., and Shivazad. M. (2007). Can exogenous betaine be an effective osmolyte in broiler chicks under water salinity stress?. Asian-Australasian Journal of Animal Science, 11:1729-1737. Online: https://doi.org/10.5713/ajas.2007.1729

Knížatová M., Mihina, S., Broucek, J., Karandusovska, I., Sauter, G., and Macuhova, I. (2010). Effect of the age and season of fattening period on carbon dioxide emissions from broiler housing. Czech Journal of Animal Science, 55(10):436-444. Online: https://doi.org/10.17221/1701-CJAS

Lara, L., and Rostagno, M. (2013). Impact of Heat Stress on Poultry Production. Animals, 3:356–369. Online: https://doi.org/10.3390/ani3020356

Lin, W., Jiao, H., Buyse, J., and Decuypere, E. (2006). Strategies for preventing heat stress in Poultry. World’s Poultry Science Journal, 62:71-86. Online: https://doi.org/10.3390/ani3020356

Lu, Z., He, X., Ma, B., Zhang, L., Li, J., Jiang, Y., Zhou, G., and Gao, F. (2017). Chronic Heat Impairs the Quality of Breast-Muscle Meat in Broilers by Affecting Redox Status and Energy-Substance Metabolism. Journal of Agricultural and Food Chemistry, 65:11251-11258. Online. https://doi.org/10.1021/acs.jafc.7b04428

Liu, W., Yuan, Y., Sun, C., Balasubramanian, B., Zhao, Z., and An, L. (2019). Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress. Animals, 9:506. Online: https://doi.org/10.3390/ani9080506

Mascarenhas, N., Costa, A., Pereira, M., Caldas, A., Batista, L., and Andrade, E. (2018). Thermal conditioning in the broiler production: challenges and possibilities. Journal of Animal Behavior and Meteorology, 6:52-55. Online: http://dx.doi.org/10.31893/2318-1265jabb.v6n2p52-55

McDevitt, R., Mack, S., and Wallis, I. (2000). Can betaine partially replace or enhance the effect of methionine by improving broiler Growth and carcase characteristics?. British Poultry Science, 41(4):473-480. Online: https://doi.org/10.1080/713654957

Mutibvu, T., Chimonyo, M., and Halimani, T. (2017). Physiological Responses of Slow-Growing Chickens under Diurnally Cycling Temperature in a Hot Environment. Brazilian Journal of Poultry Science, 19(4):567-576. Online: https://doi.org/10.1590/1806-9061-2017-0485

Nascimento, G., Nass, I., Pereira, D., Baracho, M., and García, R. (2011). Assessment of Broiler Surface Temperature Variation When Exposed to Different Air Temperatures. Brazilian Journal of Poultry Science, 13(4):259-263. Online: https://doi.org/10.1590/S1516-635X2011000400007

Nascimento, S., Maia, A., and Gebremedhin, K. (2017). Metabolic heat production and evaporation of Poultry. Poultry Science, 96:2691-2698. Online: https://doi.org/10.3382/ps/pex094

Nawab, A., Ibtisham, F., Li, G., Kiese, B., Wu, J., Liu, W., Zhao, Y., Nawab, Y., Li, K., Xiao, M., and An, L. (2018). Heat stress in Poultry production; Mitigation strategies to overcome the future challenges facing the global Poultry industry. Journal of Thermal Biology, 78:131-139. Online: https://doi.org/10.1016/j.jtherbio.2018.08.010

Nilsson, J., Molokwu, N., and Olsson, O. (2016). Body Temperature Regulation in Hot Environments. PLoS ONE, 11(8): e0161481. Online: https://doi.org/10.1371/journal.pone.0161481

Nofal, M., Magda, A., Mousa, S., Doaa, M., and Bealsh, A. (2015). Effect of dietary betaine supplementation on productive, physiological and immunological performance and carcass characteristic of growing developed chicks under the condition of heat stress. Egyptian Poultry Science Journal, 35:237-259. Online: https://doi.org/10.1590/S1516-635X2013000200005

Nyoni, N., Gab, S., and Archer, E. (2018). Heat stress and chickens: Climate risk effects on rural Poultry farming in low-income countries. Climate Development. 11(1). Online: https://doi.org/10.1080/17565529.2018.1442792

Olanrewaju, H., Wongpichet, S., Thaxton, J., Dozier, W., and Branton, S. (2006). Stress and acid-base balance in chicken. Poultry Science, 85:1266-1274. Online: https://doi.org/10.1093/ps/85.7.1266

Park, J., and Ryu, K. (2011). Relationship between dietary protein levels and betaine supplementation in laying hens. Journal of Poultry Science, 48:217-222. Online: https://doi.org/10.2141/jpsa.010101

Pawar, S., Basavaraj, S., Dhansing, L., Pandurang, K., Sahebrao, K., Vitthal, N., Pandit B., and Kumar, B. (2016). Assessing and Mitigating the Impact of Heat Stress in Poultry. Advances in Animal and Veterinary Sciences, 4(6):332-341. Online: Http://dx.doi.org/10.14737/journal.aavs/2016/4.6.332.341

Pereira, D., and Naas, I. (2008). Estimating the thermoneutral zone for broiler breeders using behavioral analysis. Computers and Electronics in Agriculture, 62:2-7.Online:https://doi.org/10.1016/j.compag.2007.09.001

R Core Team. R. (2017). A language and environment for statistical computing. R Foundation for statistical computing-

Ranjan, A., Sinha, R., Devi, I., Rahim, A., and Tiwari, S. (2019). Effect of heat stress on Poultry production and their management approaches. International Journal of Current Microbiology, 8(2):1548-1555. Online: https://doi.org/10.20546/ijcmas.2019.802.181

Rath, P., Behura, N., Sahoo, S., Panda, P., Manda, K., and Panigahi, P. (2015). Amelioration of Heat Stress for Poultry Welfare: A Strategic Approach. International Journal of Livestock Research, 5(3):1-9. Online: https://doi.org/10.5455/ijlr.20150330093915

Ratriyanto, A., Mosenthin, R., Bauer, E., and Eklund, M. (2009). Metabolic, Osmoregulatory and Nutritional Functions of Betaine in Monogastric Animals. Asian-Australasian. Journal of Animal Science, 22(10):1461-1476. Online: https://doi.org/10.5713/ajas.2009.80659

Saeed, M., Abbas, G., Alagawany, M., Kamboh, A., El-Hack, H., Khafaga, A., and Chao, S. (2019). Heat stress management in Poultry farms: A comprehensive overview. Journal of Thermal Biology, 84:414-425. Online: https://doi.org/10.1016/j.jtherbio.2019.07.025

Sakomura, N., Barbosa, N., Longo, F., Silva E., Bonato, M., and Fernandes, J. (2013). Effect of dietary betaine supplementation on the performance, carcass yield, and intestinal morphometrics of broilers submitted to heat stress. Brazilian Journal of Poultry Science, 15(2):105-112. Online: https://doi.org/10.1590/S1516-635X2013000200005

Scanes, C. (2016). Biology of stress in Poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poultry Science, 95(9): 2208-2215. Online: https://doi.org/10.3382/ps/pew137

Scanes, C. Sturkie’s Avian Physiology (Chapter 37) – Regulation of Body Temperature: Strategies and Mechanisms. Sixth ed. Academic Press USA, pp 869-905. Online: https://doi.org/10.1016/b978-0-12-407160-5.00037-3

Shakeri, M., Cottrell, J., Wilkinson, S., Ringuet, M., Furness, J., and Dunshea, F. (2018). Betaine and Antioxidants Improve Growth Performance, Breast Muscle Development and Ameliorate Thermoregulatory Responses to Cyclic Heat Exposure in Broiler Chickens. Animals, 8:162. Online: https://doi.org/10.3390/ani8100162

Shaojun, H., Shujing, Z., Sifa, D., Deyi, L., and Shehla, G. (2015). Effects of dietary betaine on Growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Animal Science Journal, 86: 897-903. Online: https://doi.org/10.1111/asj.12372

Syafwan, S., Kwakkel, R., and Verstegen, M. (2011). Heat stress and feeding strategies in meat-type chickens. World’s Poultry Science Journal, 67:653–673. Online: https://doi.org/10.1017/S0043933911000742

Tickle, P., Hutchinson, J., and Codd, J. (2018). Energy allocation and behavior in the growing broiler chicken. Scientific Reports, 8:4562. Online: https://doi.org/10.1038/s41598-018-22604-2

Zaboli, G., Huang, X., Feng, X., and Ahn, D. (2019). How can heat stress affect chicken meat quality? A review. Poultry Science, 98:1551–1556. Online: https://doi.org/10.3382/ps/pey399

Zahoor, I., Mitchell, M., Hall, S., Beard, P., Gous, R., De Koning, D., and Hocking, P. (2016). Predicted optimum ambient temperatures for broiler chickens to dissipate metabolic heat do not affect performance or improve breast muscle quality. British Poultry Science, 57(1):134-141. Online: https://doi.org/10.1080/00071668.2015.1124067

Zhang, S., Su, H., Zhou, Y., Li, X., Feng, J., and Zhang, M. (2016). Effects of sustained cold and heat stress on energy intake, growth and mitochondrial function of broiler chickens. Journal of Integrative Agriculture, 15(10):2336-2342. Online: https://doi.org/10.1016/S2095-3119(15)61314-4

Zulkifli, I., Mysahra, S., and Jin, L. (2004). Dietary supplementation of betaine and response to high temperature stress in male broiler chickens. Asian-Australasian Journal of Animal Science, 17:244-249. Online: https://doi.org/10.5713/ajas.2004.244