Determination of antifungal activity and presence of a lipid transfer peptide in Chamaemelum nobile

Main Article Content

Diana Daniela Portela Dussán
Sandra Mónica Estupiñan Torres
Silvio Alejandro Lopez-Pazos

Abstract

Chamaemelum nobile, or Roman chamomile, is a plant containing anti-inflammatory and antimicrobial properties. Antimicrobial peptides (AMPs) are part of the plant defense system including lipid transfer peptides (LPTs). Our objective is to identify a LTP-related protein from C. nobile (cnLTP). PCR was performed on C. nobile DNA for identifying cnLTP gene. Bioinformatics was used for their characterization, and a sensitivity test was carried out on Rhizoctonia solani. cnLTP has 99 amino acids, 9.8 kDa, isoelectric point of 9.39, 33 aliphatic residues, aliphatic index of 85, hydropathicity of 0.127, four alpha-helices and four disulfide bridges. An inhibitory activity of apoplastic fluid of C. nobile was determined at 1 µg/mL on R. solani. This study contributes in the knowledge of a novel and non-characterized LTP using in silico and experimental related approaches.

Article Details

Section
Scientific Article

References

Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I., and Stockinger, H. (2012). Expasy: Sib bioinformatics resource portal. Nucleic acids research, 40(W1):W597–W603. Online: https://n9.cl/6qsqz.

Bin Hafeez, A., Jiang, X., Bergen, P., and Zhu, Y. (2021). Antimicrobial peptides: an update on classifications and databases. International journal of molecular sciences, 22(21):11691. Online: https://n9.cl/7j3e1.

Boparai, J. and Sharma, P. (2020). Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein and peptide letters, 27(1):4–16. Online: https://n9.cl/7ca86.

Boyd, L., Ridout, C., O’Sullivan, D., Leach, J., and Leung, H. (2013). Plant-pathogen interactions: disease resistance in modern agriculture. Trends in genetics, 29(4):233–240. Online: https://n9.cl/7ca86.

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2):248–254. Online: https://n9.cl/dtt6o.

Butt, U., Naz, R., Nosheen, A., Yasmin, H., Keyani, R., Hussain, I., and Hassan, M. (2019). Changes in pathogenesis-related gene expression in response to bioformulations in the apoplast of maize leaves against fusarium oxysporum. Journal of Plant Interactions, 14(1):61–72. Online: https://n9.cl/47u486.

Carta, G., Murru, E., Banni, S., and Manca, C. (2017). Palmitic acid: physiological role, metabolism and nutritional implications. Frontiers in physiology, 8:902. Online: https://n9.cl/u84aoj.

Ceroni, A., Passerini, A., Vullo, A., and Frasconi, P. (2006). Disulfind: a disulfide bonding state and cysteine connectivity prediction server. Nucleic acids research, 34(Web Server issue. Online: https://n9.cl/n0oc5):W177–W181.

Edwards, K., Johnstone, C., and Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic dna for pcr analysis. Nucleic acids research, 19(6):1349. Online: https://bit.ly/3UFvZb8.

Finkina, E., Melnikova, D., and Bogdanov, I. (2016). Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Naturae, 8(2):47–61. Online: https://n9.cl/6pyyvl.

Gentzel, I., Giese, L., Zhao, W., Alonso, A., and Mackey, D. (2019). A simple method for measuring apoplast hydration and collecting apoplast contents. Plant Physiology, 179(4):1265–1272. Online: https://n9.cl/cd1nud.

Ghaedi, M., Naghiha, R., Jannesar, R., and Mirtamizdoust, B. (2015). Antibacterial and antifungal activity of flower extracts of urtica dioica, chamaemelum nobile and salvia officinalis: Effects of zn [oh] 2 nanoparticles and hp-2-minh on their property. Journal of Industrial and Engineering Chemistry, 32:353–359. Online: https://n9.cl/5rvne.

Jiang, H., Song, W., Li, A., Yang, X., and Sun, D. (2011). Identification of genes differentially expressed in cauliflower associated with resistance to xanthomonas campestris pv. campestris. Molecular biology reports, 38:621–629. Online: https://n9.cl/djhw6.

Johansson, M., Zoete, V., Michielin, O., and Guex,

N. (2012). Defining and searching for structural motifs using deepview/swiss-pdbviewer. BMC bioinformatics, 13:1–11. Online: https://n9.cl/gog0w7.

Kazemian, H., Ghafourian, S., Heidari, H., Amiri, P., Yamchi, J., Shavalipour, A., Houri, H., Maleki, A., and Sadeghifard, N. (2015). Antibacterial, anti-swarming and anti-biofilm formation activities of chamaemelum nobile against pseudomonas aeruginosa. Revista da Sociedade Brasileira de Medicina Tropical, 48:432–436. Online: https://n9.cl/w42wgt.

Kovaleva, V., Bukhteeva, I., Kit, O., and Nesmelova, I. (2020). Plant defensins from a structural perspective. International Journal of Molecular Sciences, 21(15):5307. Online: https://n9.cl/rs0vj.

Li, Y., Xiang, Q., Zhang, Q., Huang, Y., and Su, Z. (2012). Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides, 37(2):207–215. Online: https://n9.cl/lmj10.

Melnikova, D., Mineev, K., Finkina, E., Arseniev, A., and Ovchinnikova, T. (2016). A novel lipid transfer protein from the dill anethum graveolens l.: isolation, structure, heterologous expression, and functional characteristics. Journal of Peptide Science, 22(1):59–66. Online: https://n9.cl/p1gau.

Missaoui, K., Gonzalez-Klein, Z., Pazos-Castro, D., Hernandez-Ramirez, G., Garrido-Arandia, M., Brini, F., Diaz-Perales, A., and Tome-Amat, J. (2022). Plant non-specific lipid transfer proteins: An overview. Plant Physiology and Biochemistry, 171:115–127. Online: https://n9.cl/gyqyk.

Nielsen, K., Nielsen, J., Madrid, S., and Mikkelsen, J. (1996). New antifungal proteins from sugar beet (beta vulgaris l.) showing homology to non-specific lipid transfer proteins. Plant Molecular Biology, 31:539–552. Online: https://n9.cl/pvxezo.

Niu, L., Zhong, X., Zhang, Y., Yang, J., Xing, G., Li, H., Liu, D., Ma, R., Dong, Y., and Yang, X. (2020). Enhanced tolerance to phytophthora root and stem rot by over-expression of the plant antimicrobial peptide caamp1 gene in soybean. BMC genetics, 21:1–10. Online: https://n9.cl/f9rr6r.

Pagnussat, L., Burbach, C., Baluška, F., and de la Canal, L. (2012). An extracellular lipid transfer protein is relocalized intracellularly during seed germination. Journal of experimental botany, 63(18):6555–6563. Online: https://n9.cl/i93pf.

Pearlman, S., Serber, Z., and Ferrell, J. (2011). A mechanism for the evolution of phosphorylation sites. Cell, 147(4):934–946. Online: https://n9.cl/lh5n4.

Portieles, R., Ayra, C., Gonzalez, E., Gallo, A., Rodriguez, R., Chacon, O., Lopez, Y., Rodriguez, M., Castillo, J., and Pujol, M. (2010). Nmdef02, a novel antimicrobial gene isolated from nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant biotechnology journal, 8(6):678–690. Online: https://n9.cl/f12lm.

Rojas, A. (2010). Identificación de genes tipo péptido antimicrobiano provenientes de solanum lycopersicum var. cerasiforme. Master’s thesis, Universidad Nacional de Colombia.

Rondon-Villarreal, P. and Pinzon-Reyes, E. (2018). Computer aided design of non-toxic antibacterial peptides. Current topics in medicinal chemistry, 18(13):1044–1052. Online: https://n9.cl/je9o7g.

Saderi, H., Owlia, P., Hosseini, A., and Semiyari, H. (2005). Antimicrobial effects of chamomile extract and essential oil on clinically isolated porphyromonas gingivalis from periodontitis. In III WOCMAP Congress on Medicinal and Aromatic Plants, volume 6, pages 145–146. Acta horticulturae.

Shah, N., Altschul, S., and Pop, M. (2018). Outlier detection in blast hits. Algorithms for Molecular Biology, 13:1–9. Online: https://n9.cl/cwep59.

Sharifzadeh, A., Javan, A., Shokri, H., Abbaszadeh, S., and Keykhosravy, K. (2016). Evaluation of antioxidant and antifungal properties of the traditional plants against foodborne fungal pathogens. Journal de Mycologie Médicale, 26(1):e11–e17. Online: https://n9.cl/d8ldk.

Sharma, P., Kaur, J., Sharma, G., and Kashyap, P. (2022). Plant derived antimicrobial peptides: Mechanism of target, isolation techniques, sources and pharmaceutical applications. Journal of Food Biochemistry, 46(10):e14348. Online: https://n9.cl/n7751.

Sievers, F. and Higgins, D. (2014). Clustal omega. Current protocols in bioinformatics, 48(1):3–13. Online: https://n9.cl/1eihb.

Srivastava, J., Shankar, E., and Gupta, S. (2010). Chamomile: A herbal medicine of the past with a bright future. Molecular medicine reports, 3(6):895– 901. Online: https://n9.cl/fqf5r.

Tassin-Moindrot, S., Caille, A., Douliez, J., Marion, D., and Vovelle, F. (2000). The wide binding properties of a wheat nonspecific lipid transfer protein: solution structure of a complex with prostaglandin b2. European Journal of Biochemistry, 267(4):1117–1124. Online: https://n9.cl/nky5q.

Troeira Henriques, S. and Craik, D. (2017). Cyclotide structure and function: The role of membrane binding and permeation. Biochemistry, 56(5):669– 682. Online: https://n9.cl/sx0eik.

Venkatesan, J. and Roy, D. (2023). Cyclic cystine knot and its strong implication on the structure and dynamics of cyclotides. Proteins: Structure, Function, and Bioinformatics, 91(2):256–267. Online: https://n9.cl/qcmf6g.

Yang, X. and Yousef, A. (2018). Antimicrobial peptides produced by brevibacillus spp.: structure, classification and bioactivity: a mini review. World journal of microbiology and biotechnology, 34:1–10. Online: https://n9.cl/bqf5o.

Zhang, Y. (2009). I-tasser: Fully automated protein structure prediction in casp8. Proteins: Structure, Function, and Bioinformatics, 77(S9):100–113. Online: https://n9.cl/xo92s.

Zhou, J. and Zhang, Y. (2020). Plant immunity: danger perception and signaling. Cell, 181(5):978– 989. Online: https://n9.cl/98e2d.