Obtaining bioethanol from cocoa shells (Theobroma cacao) using Trichoderma reesei and Trichoderma ghanense for enzymatic hydrolysis

Main Article Content

Joel Eduardo Vielma-Puente
Tatiana Zamora Zamora
Luis Lenin Galarza Romero
Meribary Margarita Monsalve
Joan Vera Villalobos
Viviana Andrea Corrales Mendoza
Fernanda Carolina Chacha Coyago
Darling Balón Cortez
Leticia Villacís Morán
Rodrigo Fernando Espinoza Lozano

Abstract

The use of fossil fuels generates Greenhouse Gases (GHG), one of the main causes of global overheating, which has become a problem in recent decades. The use of second generation of biofuels has been perceived as an alternative to replace or reduce the use of fossil fuels; for this reason, the present work aims to obtain bioethanol from cocoa shell (Theobroma cacao) of the clone CCN-51 obtained in Los Rios Province, Ecuador, through a series of steps involving: a) alkaline pretreatment, b) enzymatic hydrolysis using two species of endophytic fungi from the same cocoa shell (Trichoderma reesei and Trichoderma ghanense) at different concentration and c) alcoholic fermentation using Saccharomyces cerevisiae yeast. The amount of bioethanol obtained from the process was determined by gas chromatograph with a flame ionization detector (FID). The results show a moderate production of bioethanol ranging from 0.024 % v/v to 0.254 % v/v, which indicates that the cocoa shell (Theobroma cacao) of clone CCN 51 is a potential matrix to bioethanol production. 

Article Details

Section
Scientific Article

References

Adav, S. S., Tze Chao, L., and Kwan Sze, S. (2012). Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Molecular & Cellular Proteomics, 11(7):1–15. Online: https://n9.cl/rd8o96.

Antizar-Ladislao, B. and Turrion-Gomez, J. L. (2008). Second-generation biofuels and local bioenergy systems. Biofuels, Bioproducts and Biorefining, 2(5):455–469. Online: https://n9.cl/1zd89.

Anwar, Z., Gulfraz, M., and Irshad, M. (2014). Agroindustrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7(2):163–173. Online: https://n9.cl/mlpp59.

AOAC (2012). AOAC International, Official Method 934.01. Online: https://n9.cl/kcu58.

ASTM International (2019). Astm d1696-95(2019)e1: Standard Test Method for solubility of cellulose in sodium hydroxide. Technical report, American Society for Testing and Materials. Online: https://n9.cl/g375h.

Benalcázar, J. (2018). Evaluación de diferentes pretratamientos químicos a la biomasa de la cáscara de cacao para procesos de fermentación alcohólica. Tesis de grado, Universidad San Francisco de Quito. Online: https://n9.cl/rrbswk.

Casabar, J., Unpaprom, Y., and Ramaraj, R. (2019). Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery, 9:761– 765. Online: https://n9.cl/2ir9w.

Castillo, E., Alvarez, C., and Contreras, Y. (2018). Caracterización fisicoquímica de la cáscara del fruto de un clon de cacao (Theobroma cacao l.) cosechados en Caucagua estado Miranda. Venezuela. Revista de Investigación, 48(95):154–167. Online: https://n9.cl/uap1c.

Caviedes Rubio, D. I., Parra García, F. E., and Andrade Vargas, C. K. (2024). Ecological, economic and social impacts of the colombian cocoa sector. La Granja, 40(2):50–64. Online: https://n9.cl/tvh35.

Chafla, A., Rodriguez, Z., Boucourt, R., and Torres, V. (2016). Bromatological characterization of cocoa shell (Theobroma cacao), from seven cantons of the Amazonia, Ecuador. Cuban Journal of Agricultural Science, 50(2):245–252. Online: https://n9.cl/goi4m.

Cury R, K., Aguas M, Y., Martinez M, A., Olivero V, R., and Chams Ch, L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal, 9(Suppl. 1):122–132. Online: https://n9.cl/ydvj.

Encalada, J. and Jácome, P. (2018). Determinación de parámetros cinéticos en la devolatilización de biomasa residual de cacao ecuatoriano. Tesis de grado, Universidad Central del Ecuador. Online: https://n9.cl/3lhtyn.

Jannah, A. M. and Asip, F. (2015). Bioethanol production from coconut fiber using alkaline pretreatment and acid hydrolysis method. International Journal on Advanced Science, Engineering and Information Technology, 5(5):320–322. Online: https://n9.cl/hilrln.

Khan, S., Ali, M., Mustafa, A., and Iqbal, A. (2025). Urban photobioreactor for co2 sequestration and microalgal biomass production. La Granja, 41(1):100–117. Online: https://n9.cl/t47z8.

Ko, J. K., Um, Y., Park, Y. C., Seo, J. H., and Kim, K. H.

(2015). Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Applied Microbiology and Biotechnology, 99:4201–4212. Online: https://n9.cl/s5rsd.

Loayza, K. (2020). Determinación de las condiciones óptimas de fermentación para la obtención de bioetanol a partir del hidrolizado ácido de la corteza de cacao (Theobroma cacao) proveniente de la industria cacaotera del Ecuador. Tesis de grado, Universidad Politécnica Salesiana. Online: https://n9.cl/rk6wl.

Loja Sánchez, C. P. (2016). Optimización de los residuos de cascarilla de arroz mediante pretratamiento por hidrólisis ácida para la obtención de azúcares reductores. Tesis de grado, Univerisidad de Cuenca. Online: https://n9.cl/0njsl.

López, J., Cuarán, J., Arenas, L., and Flórez, L. (2014). Usos potenciales de la cáscara de banano: elaboración de un bioplástico. Revista Colombiana de Investigaciones Agroindustriales, 1(1):7–21. Online: https://n9.cl/nvya3.

Mansur, A. R., Oh, J., Lee, H. S., and Oh, S. Y. (2022).

Determination of ethanol in foods and beverages by magnetic stirring-assisted aqueous extraction coupled with GC-FID: A validated method for halal verification. Food Chemistry, 366:130526. Online: https://n9.cl/lsy6u.

Morais, W., Pacheco, T., Correa, P., Martins, A., Mata, T., and Caetano, N. (2020). Acid pretreatment of sugarcane biomass to obtain hemicellulosic hydrolisate rich in fermentable sugar. Energy Reports, 6(Suppl. 8):18–23. Online: https://n9.cl/v5ves.

Nasir Iqbal, H., Ahmed, I., Zia, M., and Irfan, M. (2011). Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under ssf and its detergent compatibility. Advances in Bioscience and Biotechnology, 2(3):149–156. Online: https://n9.cl/d31ao.

Nomanbhay, S., Hussain, R., and Palanisamy, K. (2013). Microwave-assisted alkaline pretreatment and microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. Journal of Sustainable Bioenergy Systems, 3(1):7–17. Online: https://n9.cl/699ly.

Oliva, J. M., Negro, M. J., Manzanares, P., Ballesteros, I., Chamorro, M. ., Sáez, F., Ballesteros, M., and Moreno, A. D. (2017). A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation, 3(2):1–15. Online: https://n9.cl/ddzoa.

Orejuela-Escobar, L. M., Landázuri, A. C., and Goodell, B. (2021). Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. Journal of Bioresources and Bioproducts, 6(2):83–107. Online: https://n9.cl/5qisge.

Peciulyte, A., Anasontzis, G., Karlström, K., Larsson, P. T., and Olsson, L. (2014). Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genetics and Biology, 72:64–72. Online: https://n9.cl/1e0l6.

Rosyida, V., Indrianingsih, A., Maryana, R., and Wahono, S. (2015). Effect of temperature and fermentation time of crude cellulase production by Trichoderma Reeseion straw substrate. Energy Procedia, 65:368–371. Online: https://n9.cl/33llu.

Sarmiento Hernández, J. S. (2019). Evaluación del uso de la cáscara de cacao como sustituto parcial de la matriz polimérica en la obtención de espumas de poliuretano. Tesis de grado, Fundación Universidad de América. Online: https://n9.cl/g86wuw.

Selig, M., Weiss, N., and Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass, NREL/TP-510-42629. Technical report, National Renewable Energy Laboratory (NREL). Online: https://n9.cl/mfyv6.

Sigüencia Avila, J. M., Delgado Noboa, J. W., Posso, F., and Sanchez Quezada, J. P. (2020). Estimación del potencial de producción de bioetanol a partir de los residuos de la corteza del cacao en Ecuador. Ciencia y Tecnología Agropecuaria, 21(3):1–20. Online: https://n9.cl/8urepk.

Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., and Templeton, D. (2005). Determination of extractivesin biomass, NREL TP-510-42619. Technical report, National Renewable Energy Laboratory (NREL). Online: https://n9.cl/sh4rv.

Sánchez Riaño, A. M., Gutiérrez Morales, A. I., Muñoz Hernández, J. A., and Rivera Barrero, C. A. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Revista Tumbaga, 1(5):61–91. Online: https://n9.cl/g736is.

TAPPI (2002). Acid-insoluble lignin in wood and pulp. T 222 om-02. Technical report, Technical Association of the Pulp and Paper Industry.

Teneda Llerena, W. F., Guamán Guevara, M. D., and Oyaque Mora, S. M. (2019). Exploración de la intención de consumo de la cascarilla de cacao (Theobroma cacao l.) como infusión: caso Tungurahua-Ecuador. Cuadernos de Contabilidad, 20(50):1–14. Online: https://n9.cl/5gsqg.

Thiex, N., Novotny, L., and Crawford, A. (2012). Determination of ash in animal feed: AOAC Official Method 942.05 Revisited. Journal of AOAC international, 95(5):1392–1397. Online: https://n9.cl/6v757.

Torres, Y. (2016). Caracterización de biomasa lignocelulósica (Theobroma cacao l.) para uso en la obtención de etanol por vía fermentativa. Tesis de grado, Universidad Santo Tomás.

Van Zyl, W., Lynd, L., Den Haan, R., and McBride, J. (2007). Consolidated Bioprocessing for Bioethanol Production Using Saccharomyces cerevisiae, volume 108. Springer. 205-235. Online: https://n9.cl/u3jibg.

Villamizar Jaimes, Y. L., Rodríguez Guerrero, J. S., and León Castrillo, L. C. (2021). Caracterización fisicoquímica, microbiológica y funcional de harina de cáscara de cacao (Theobroma cacao l.) variedad ccn-51. Cuaderno Activa, 9(9):65–75. Online: https://n9.cl/uznkwo.

Vivanco Carpio, E., Matute Castro, L., and Campo Fernández, M. (2018). Caracterización físico-química de la cascarilla de Theobroma cacao L., variedades nacional y CCN-51. In Conference Proceedings UTMACH, volume 2, pages 213–222. Online: https://n9.cl/fizwm9e.

Vásquez, J. (2010). Caracterización microbiológica y producción de Trichoderma harzianum y Trichoderma viride en cultivo artesanal. Tesis de grado, Pontificia Universidad Javeriana. Online: https://n9.cl/z9w6j.

Wahono, S., Darsih, C., Rosyida, V., Maryana, R., and Pratiwi, D. (2014). Optimization of cellulose enzyme in the simultaneous saccharification and fermentation of sugarcane bagasse on the second-generation bioethanol production technology. Energy Procedia, 47:268–272. Online: https://n9.cl/h7x0m.

Winarsih, S. and Siskawardani, D. D. (2020). Hydrolysis of corncobs using a mixture of crude enzymes from Trichoderma reesei and Aspergillus niger for bioethanol production. Energy Reports, 6(Suppl. 8):256–262. Online: https://n9.cl/09eb4.