Mejora del valor nutritivo de harina de follaje de Lupinus mutabilis Sweet mediante fermentación en estado sólido con las cepas Aspergillus niger J1 y Trichoderma viride M5-2
Contenido principal del artículo
Resumen
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 3.0 Ecuador license: works can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to Universidad Politécnica Salesiana of Ecuador for the printed edition.
Referencias
Adney, B. and Baker, J. (2008). Measurement of cellulase activities: laboratory analytical procedure (lap); issue date: 08/12/1996. Technical report, National Renewable Energy Laboratory. Online: https://n9.cl/049al5.
Bartkiene, E., Sakiene, V., Bartkevics, V., Juodeikiene, G., Lele, V., Wiacek, C., and Braun, P. (2018). Modulation of the nutritional value of lupine wholemeal and protein isolates using submerged and solid-state fermentation with Pediococcus pentosaceus strains. International Journal of Food Science and Technology, 53(8):1896–1905. Online: https://n9.cl/1o079.
Bessada, S., Barreira, J., and Oliveira, M. (2019). Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in Food Science and Technology, 93:53–68. Online: https://n9.cl/meeep.
Carvajal-Larenas, F. (2019). Nutritional, rheological and sensory evaluation of Lupinus mutabilis food products-a review. Czech Journal of Food Sciences, 37(5):301–311. Online: https://n9.cl/4556o.
De la Cruz, K., Dustet-Mendoza, J., Pérez-Caballero, L., and Anaya-Villalpanda, M. (2016). Caracterización de enzimas celulasas de nuevas cepas fúngicas obtenidas a partir de bagazo de caña de azúcar. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 50(2):35–42. Online: https://n9.cl/4lvc7.
Díaz Sánchez, M., Martín-Cabrejas, M., Martínez Pérez, M., Savón Valdés, L., Aguilera, Y., Benítez, V., Torres Cárdenas, V., Coto Valdés, G., González Conde, A., and Sarmiento Menéndez,
M. (2017). Germinados de leguminosas temporales: Una alternativa para la alimentación animal. Cuban Journal of Agricultural Science, 51(3):381–390. Online: https://n9.cl/s4zip.
Dustet, J. and Izquierdo, E. (2004). Aplicación de balances de masa y energía al proceso de fermentación en estado sólido de bagazo de caña de azúcar con Aspergillus niger. Biotecnología Aplicada, 21(2):85–91. Online: https://n9.cl/rxp1c.
Gao, W., Lei, Z., Tabil, L., and Zhao, R. (2020). Biological pretreatment by solid-state fermentation of oat straw to enhance physical quality of pellets. Journal of Chemistry, 2020(1). Online: https://n9.cl/sed5n.
Gulisano, A., Alves, S., Martins, J., and Trindade, L. (2019). Genetics and breeding of Lupinus mutabilis: An emerging protein crop. Frontiers in Plant Science, 10:1385. Online: https://n9.cl/ol8z4.
Haldar, D. and Purkait, M. (2020). Lignocellulosic conversion into value-added products: A review. Process Biochemistry, 89:110–133. Online: https://n9.cl/lt7j10.
Jha, R., Fouhse, J., Tiwari, U., Li, L., and Willing, B. (2019). Dietary fiber and intestinal health of monogastric animals. Frontiers in Veterinary Science, 6(48). Online: https://n9.cl/l4fl3.
Jiménez-Moreno, E., González-Alvarado, J., de Coca-Sinova, A., Lázaro, R., Cámara, L., and Mateos, G. (2019). Insoluble fiber sources in mash or pellets diets for young broilers. 2. effects on gastrointestinal tract development and nutrient digestibility. Poultry Science, 98(6):2531– 2547. Online: https://n9.cl/t1bt5.
Kaschuk, J., de Alexandria Santos, D., Frollini, E., Canduri, F., and Porto, A. (2020). Influence of ph, temperature, and sisal pulp on the production of cellulases from Aspergillus sp. cbmai 1198 and hydrolysis of cellulosic materials with different hemicelluloses content, crystallinity, and average molar mass. Biomass Conversion and Biorefinery, 10:483–494. Online: https://n9.cl/3mbvf.
Lameiras, F., Ras, C., Ten Pierick, A., Heijnen, J., and van Gulik, W. (2018). Stoichiometry and kinetics of single and mixed substrate uptake in Aspergillus niger. Bioprocess and Biosystems Engineering, 41:157–170. Online: https://n9.cl/uk1et.
Linn, J. and Martin, N. (1991). Forage quality analyses and interpretation. The Veterinary Clinics of North America. Food Animal Practice, 7(2):509–523. Online: https://n9.cl/tbn61.
Malgas, S., Thoresen, M., van Dyk, J., and Pletschke, B. (2017). Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. Enzyme and Microbial Technology, 103:1–11. Online: https://n9.cl/pl4kx.
Martínez Flores, L., Ruivenkamp, G., and Jongerden, J. (2016). Fitomejoramiento y racionalidad social: los efectos no intencionales de la liberación de una semilla de lupino (Lupinus mutabilis sweet) en ecuador. Antípoda. Revista de Antropología y Arqueología, (26):71–91. Online: https://bit.ly/4fublCu.
Martínez-Pérez, M., Sarmiento-Franco, L., SantosRicalde, R., and Sandoval-Castro, C. (2018). Chemical composition and in vitro protein digestibility of processed Mucuna pruriens seeds. Cuban Journal of Agricultural Science, 52(3):313–319. Online: https://n9.cl/daxg4.
Molina, M., Lechuga, O., and Bressani, R. (1990). Valor nutritivo de la pulpa de café sometida a fermentación sólida usando Aspergillus niger en pollos y cerdos. Agronomía Mesoamericana, 1:79–82. Online: https://n9.cl/imwd4j.
Molina-Poveda, C., Lucas, M., and Jover, M. (2013). Evaluation of the potential of andean lupin meal (Lupinus mutabilis sweet) as an alternative to fish meal in juvenile Litopenaeus vannamei diets. Aquaculture, 410:148–156. Online: https://n9.cl/pe2tq.
Oliva, M., Valqui, L., Meléndez, J., Milla, M., Leiva, S., Collazos, R., and Maicelo, J. (2018). Influencia de especies arbóreas nativas en sistemas silvopastoriles sobre el rendimiento y valor nutricional de Lolium multiflorum y Trifolium repens. Scientia Agropecuaria, 9(4):579–583. Online: https://n9.cl/z7qw8.
Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13(2-3):81–84. Online: https://n9.cl/1413a.
Pérez, H., Dustet, J., and Valiño, E. (2016). Incremento de la calidad nutritiva potencial de la harina de follaje de stizolobium niveum (mucuna) mediante fermentación en estado sólido con el hongo trichoderma viride m5-2. Revista CENIC. Ciencias Químicas, 47:30–33. Online: https://n9.cl/bbzls.
Rodríguez García, I. (2017). Potencialidades de Tithonia diversifolia (hemsl.) gray en la alimentación animal. Livestock Research for Rural Development, 29(4). Online: https://n9.cl/k43jr0.
Roussos, S., Olmos, A., Raimbault, M., SaucedoCastañeda, G., and Lonsane, B. (1991). Strategies for large scale inoculum development for solid state fermentation system: conidiospores of Trichoderma harzianum. Biotechnology Techniques, 5:415–420. Online: https://n9.cl/yqhhe.
Savón, L., Gutiérrez, O., Ojeda, F., and Scull, I. (2005). Harinas de follajes tropicales: una alternativa potencial para la alimentación de especies monogástricas. Pastos y Forrajes, 28(1):69–79. Online: https://n9.cl/dqjuw.
Scull, I., Savón, L., Valiño, E., and Ramos, Y. (2015). Composición fitoquímica de la harina de forraje de mucuna (Styzolobium aterrimum) fermentada con el hongo Trichoderma viride. Multiciencias, 15(3):265–270. Online: https://n9.cl/srm4x.
Siddhuraju, P., Becker, K., and Makkar, H. (2000). Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an under-utilized tropical legume, Mucuna pruriens var. Utilis. Journal of Agricultural and Food Chemistry, 48(12):6048–6060. Online: https://n9.cl/6dy5p.
Starkute, V., Bartkiene, E., Bartkevics, V., Rusko, J., Zadeike, D., and Juodeikiene, G. (2016). Amino acids profile and antioxidant activity of different Lupinus angustifolius seeds after solid state and submerged fermentations. Journal of Food Science and Technology, 53:4141–4148. Online: https://n9.cl/sh9y7.
Sugiharto, S. and Ranjitkar, S. (2019). Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Animal Nutrition, 5(1):1–10. Online: https://n9.cl/53y71.
Trujillo, A. and Escobar, A. (2012). Evaluación de la sustitución de concentrado comercial por harina de forrajeras en pollos de engorde ross. Agroecología: Ciencia y Tecnología, 1(1):6–12. Online: https://n9.cl/m7jeu.
Valiño, E., Elías, A., Torres, V., Carrasco, T., and Albelo, N. (2004a). Improvement of sugarcane bagasse composition by the strain Trichoderma viride m5-2 in a solid-state fermentation bioreactor. Cuban Journal of Agricultural Science, 38(2):143–150. Online: https://n9.cl/peo82j.
Valiño, E., García, R., and Albelo, N. (2004b). Efecto de la inoculación de la cepa de Trichoderma viride 137 mcxi en mezclas de Vigna unguiculata y bagazo de caña de azúcar para disminuir factores antinutricionales. Revista Cubana de Ciencia Agrícola, 38(1):65–72. Online: https://n9.cl/l09v6.
Valiño, E., Savón, L., Elías, A., Rodriguez, M., and Albelo, N. (2015). Mejora del valor nutritivo de las leguminosas temporales Vigna unguiculata, Canavalia ensiformis, Stizolobium niveum, Lablab purpureus mediante el procesamiento de sus granos con Trichoderma viride m5-2. Cuban Journal of Agricultural Science, 49(1):81–89. Online: https://n9.cl/l25tw.
Varadyova, Z., Certik, M., and Jalc, D. (2018). The possible application of fungal enriched substrates in ruminant nutrition. a review. Journal of Animal and Feed Sciences, 27(1):3–10. Online: https://n9.cl/9gn0c.
Vargas-Guerrero, B., García-López, P., MartínezAyala, A., Domínguez-Rosales, J., and GurrolaDíaz, C. (2014). Administration of Lupinus albus gamma conglutin (cγ) to n5 stz rats augmented Ins-1 gene expression and pancreatic insulin content. Plant Foods for Human Nutrition, 69:241–247. Online: https://n9.cl/hhs3c3.
Vera, J., Dueñas, A., Rodríguez, J., and Radice, M. (2022). Phytochemical characterization of the ethanolic extract, antioxidant activity, phenolic content and toxicity of the essential oil of Curcuma longa l. Revista De La Facultad De Agronoma De La Universidad Del Zulia, 39(1):1–7. Online: https://bit.ly/3Ag5diz.
Villacrés, E., Quelal, M., Jácome, X., Cueva, G., and Rosell, C. (2020). Effect of debittering and solidstate fermentation processes on the nutritional content of lupine (Lupinus mutabilis sweet). International Journal of Food Science and Technology, 55(6):2589–2598. Online: https://n9.cl/4zm84.
Villena, G. and Gutiérrez-Correa, M. (2003). Biopelículas de Aspergillus niger para la producción de celulasas: algunos aspectos estructurales y fisiológicos. Revista Peruana de Biología, 10(1):78–87. Online: https://n9.cl/h1dgl.
Xu, C., Wang, B., Pu, Y., Tao, J., and Zhang, T. (2017). Advances in extraction and analysis of phenolic compounds from plant materials. Chinese Journal of Natural Medicines, 15(10):721–731. Online: https://n9.cl/qdayb.