Choice of trap plant and substrate for mycorrhizal inoculum production

Main Article Content

Jaime Naranjo-Morán
Karen Olivo-Fernández
Rodrigo Oviedo-Archundia
Milton Barcos-Arias

Abstract

Arbuscular mycorrhizal trap plants can be cultivated or wild species. In addition to withstanding anthropogenic pressure, these are excellent hosts for massive multiplication of arbuscular mycorrhizae. The objective of this work is to select the most suitable trap plant and substrate for the massive propagation of arbuscular mycorrhizal fungi. Four species were evaluated (Cajanus cajan, Cynodon dactylon, Tagetes patula, and Plectranthus tomentosa), two types of substrates (Substrate 1: sand, rice husk and vermiculite; Substrate 2: sand, rice husk and peat) and two phosphate sources (tricalcium phosphate and rock phosphate). At 120 days after inoculation, the percentage of mycorrhization and sporulation was evaluated. As a result, it was identified that the species Plectranthus tomentosa in substrate 2 was the most suitable, since it obtained a total mycorrhization of 79.7 % at a concentration of 1000 ppm of tricalcium phosphate, while in substrate 1 it had 67.5 % at the same concentration of tricalcium phosphate. This species also presented a higher number of spores (638 spore / 100 g soil) in substrate 1 at a concentration of 1000 ppm of tricalcium phosphate. In conclusion, the trap plant and substrate composition had a direct influence on the production of mycorrhizal inoculum.

Article Details

Section
Scientific Article

References

Alarcón, A. andFerrera-Cerrato, R. (2003). Aplicación de fósforo e inoculación de hongos micorrízicos arbusculares en el crecimiento y estado nutricional de Citrus volkameriana tan & pasq. Terra Latinoamericana, 21(1):91–99. Online: https://n9.cl/78cwt.

Covacevich, F., Marino, M. A., and Echeverría, H. E. (2006). The phosphorus source determines the arbuscular mycorrhizal potential and the native mycorrhizal colonization of tall fescue and wheatgrass. European Journal of Soil Biology, 42(3):127–138. Online: https://n9.cl/alej7.

Crossay, T.and Majorel, C., Redecker, D., Gensous, S., Medevielle, V., Durrieu, G., Yvon Cavaloc, Y., and Amir, H. (2019). Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza, 29(4):325–339. Online: https://n9.cl/d6jg5.

Davison, J., García de León, D., Zobel, M., Moora, M., Bueno, C. G., Barceló, M., Gerz, M., León, D.,

Meng, Y., Pillar, V. D., Sepp, S.-K., Soudzilovas- kaia, N. A., Tedersoo, L., Vaessen, S., Vahter, T., Winck, B., and Öpik, M. (2020). Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytologist, 226(4):1117–1128. Online: https://n9.cl/8dae6.

Deepika, S. and Kothamasi, D. (2015). Soil moisturea regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza, 25(1):67–75. Online: https://n9.cl/kvt2bz.

Fabian´ska, I., Pesch, L., Koebke, E., Gerlach, N., and Bucher, M. (2020). Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota. PloS one, 15(6):e0232633. Online: https://n9.cl/puj1p.

Furlan, V., Bartschi, H., and Fortin, J. (1980). Media for density gradient extraction of endomycorrhizal spores. Transactions of the British Mycological Society, 75(2):336–338. Online: https://n9.cl/7iufjh.

Galindo Pardo, F. V., Fortis Hernández, M., Preciado Rangel, P., Trejo Valencia, R., Segura Castruita,

M. ., and Orozco Vidal, J. A. (2014). Caracterización físico-química de sustratos orgánicos para producción de pepino (Cucumis sativus l.) bajo sistema protegido. Revista mexicana de ciencias agrícolas, 5(7):1219–1232. Online: https://n9.cl/e1xlc.

Gao, C., Montoya, L., Xu, L., Madera, M., Hollingsworth, J., Purdom, E., Hutmacher, R. B., Dahlberg, J. A., Coleman-Derr, D., Lemaux, P. G., and Taylor, J. W. (2019). Strong succession in arbuscular mycorrhizal fungal communities. The ISME Journal, 13(1):214–226. Online:https://n9.cl/ x4aa4.

Gerderman, J. and Nicholson, T. (1963). Spores of mycorrhizal endogene species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2):235–244. Online: https://n9.cl/cd3na.

Hu, J., Cui, X., Wang, J., and Lin, X. (2019). The nonsimultaneous enhancement of phosphorus acquisition and mobilization respond to enhanced arbuscular mycorrhization on maize (Zea mays l.). Microorganisms, 7(12):651.Online: https://n9.cl/3yzdx.

Koske, R. E. and Gemma, J. N. (1995). Vesiculararbuscular mycorrhizal inoculation of hawaiian plants: a conservation technique for endangered tropical species. Pacific Science, 49(2):181–191. Online: https://n9.cl/mkat7.

Li, X., Xu, M., Christie, P., Li, X., and Zhang, J. (2018). Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the tibetan plateau. Mycorrhiza, 28(7):605–619. Online: https://n9.cl/nlc48.

Li, X., Xu, M., Li, X., Christie, P., Wagg, C., and Zhang, J. (2020). Linkages between changes in plant and mycorrhizal fungal community composition at high versus low elevation in alpine ecosystems. Environmental Microbiology Reports, 12(2):229–240. Online: https://n9.cl/86n4p.

Liu, R. and Wang, F. (2003). Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 13(3):123–127. Online: https://n9.cl/0nd60.

López-Hidalgo, H., Martínez-González, J. C., Balseca-Guzmán, D., Gusqui-Vilema, L., and Cienfuegos-Rivas, E. (2018). Crecimiento inicial de dos variedades de gandul (Cajanus cajan) en el trópico de ecuador. Abanico Veterinario, 8(2):33–46. Online: https://n9.cl/e3si3t.

Lu, N., Xu, X., Wang, P., Zhang, P., Ji, B., and Wang,

X. (2019). Succession in arbuscular mycorrhizal fungi can be attributed to a chronosequence of Cunninghamia lanceolata. Scientific Reports, 9:18057. Online: https://n9.cl/g6i6p.

McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., and Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115(3):495–501. Online: https://n9.cl/p5l49x.

Ramalho da Silva, I., Aragão de Mello, C. M., Ferreira Neto, R. A., Alves da Silva, D. K., de Melo, A. L., Oehl, F., and Costa Maia, L. (2014). Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the brazilian semiarid. Applied Soil Ecology, 84:166–175. Online: https://n9.cl/lgqki.

Redha, A., Al-Hasan, R., José, J., Saju, D., and Afzal, M. (2019). The photosynthetic apparatus of Conocarpus lancifolius engl. (combretaceae) suffers damage in soil contaminated with heavy metals. Botany, 97(3):179–189. Online:https://n9.cl/7i5rr.

Salas, E. and Blanco, F. (2000). Selección de plantas hospederas y efecto del fosforo para la producción de inoculo de bongos formadores de micorrizas arbusculares por el método de cultivo en macetas. Agronomía Costarricense, 24(1):19–28. Online: https://n9.cl/ti1ngp.

Schmidt, B., Domonkos, M., S¸ uma˘lan, R., and Biró,

B. (2010). Suppression of arbuscular mycorrhiza’s development by high concentrations of phosphorous at Tagetes patula l. Research Journal of Agricultural Science, 42(4):156–162. Online: https://n9.cl/hxyrc.

Selvakumar, G., Yi, P. H., Lee, S. E., Shagol, C. C.,

Han, S. G., Sa, T., and Chung, B. N. (2018). Effects of long-term subcultured arbuscular mycorrhizal fungi on red pepper plant growth and soil glomalin content. Mycobiology, 46(2):122–128. Online: https://n9.cl/6bumxh.

Sieverding, E. (1983). Manual de métodos para la investigación de la micorriza vesículo arbuscular en el laboratorio. Technical report, Centro Internacional de Agricultura Tropical. CIAT. Online: https://n9.cl/vzyrpk.

Stewart, L. I., Hamel, C., Hogue, R., and Moutoglis, P. (2005). Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Mycorrhiza, 15(8):612–619. Online: https://n9.cl/6twcd.

Tedersoo, L., Bahram, M., and Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. Science, 367(6480):eaba1223. Online: https://n9.cl/o4981.

Van Geel, M., Jacquemyn, H., Plue, J., Saar, L., Kasari, L., Peeters, G., van Acker, K., Honnay, O., and Ceulemans, T. (2018). Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of european seminatural grasslands. New Phytologist, 220(4):1262–1272. Online: https://n9.cl/5ra9e.

Van’t Padje, A., Oyarte Galvez, L., Klein, M., Hink, M. A., Postma, M., Shimizu, T., and Kiers, E. T. (2021a). Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. The ISME journal, 15(2):435–449. Online: https://n9.cl/evjq0g.

Van’t Padje, A., Werner, G., and Kiers, E. T. (2021b). Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt ’crashes’ and ’booms’ of resource availability. The New phytologist, 229(5):2933–2944. Online: https://n9.cl/bp7i3.

Wu, S., You, F., Wu, Z., Bond, P., Hall, M., and Huang, L. (2020). Molecular diversity of arbuscular mycorrhizal fungal communities across the gradient of alkaline fe ore tailings, revegetated waste rock to natural soil sites. Environmental Science and Pollution Research, 27(1-12):11968– 11979. Online: https://n9.cl/e4hgo.

Xiang, X., Gibbons, S. M., He, J. S., Wang, C., He, D., Li, Q., Ni, Y., and Chu, H. (2016). Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the qinghai-tibet plateau. PeerJ, 4:e2226. Online: https://n9.cl/z37ke.