Evaluation of PLA active biodegradable films incorporated of essential oils to inhibit microbial adhesion
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 3.0 Ecuador license: works can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to Universidad Politécnica Salesiana of Ecuador for the printed edition.
References
Ahmed, J., Hiremath, N. and Jacob, H. (2016) ‘Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni’, 81(2). doi: 10.1111/1750-3841.13193.
Albado Plaus, E., Saez Flores, G. and Grabiel Ataucusi, S. (2001) ‘Composición química y actividad antibacteriana del aceite esencial del Origanum vulgare (orégano).’, Revista Médica Herediana, 12(3), pp. 16–19.
Anuar, H. et al. (2017) ‘Impregnation of Cinnamon Essential Oil into Plasticised Polylactic Acid Biocomposite Film for Active Food Packaging’, Journal of Packaging Technology and Research. Springer Singapore, 1(3), pp. 149–156. doi: 10.1007/s41783-017-0022-1.
Becerril, R. et al. (2007) ‘Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus’, Analytical and Bioanalytical Chemistry, 388(5–6), pp. 1003–1011. doi: 10.1007/s00216-007-1332-x.
Blanot, V. (2014) Desarrollo de formulaciones (PLA) con actividad antimicrobiana para el uso en envasado activo en aplicaciones alimentarias.
Bouhdid, S. et al. (2009) ‘Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil’, Journal of applied microbiology, 106(5), pp. 1558–1568.
Bouhdid, S. et al. (2010) ‘Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus induced by Cinnamon verum essential oil’, Journal of Applied Microbiology, 109(4), pp. 1139–1149.
Burgos, N., Martino, V. P. and Jiménez, A. (2013) ‘Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid’, Polymer Degradation and Stability, 98(2), pp. 651–658. doi: 10.1016/j.polymdegradstab.2012.11.009.
Burt, S. (2004) ‘Essential oils: their antibacterial properties and potential applications in foods--a review.’, International journal of food microbiology, 94(3), pp. 223–53. doi: 10.1016/j.ijfoodmicro.2004.03.022.
Cabrera, C., Gómez, R. and Zúniga, A. (2007) ‘La resistencia de bacterias a antibióticos , antisépticos y desinfectantes una manifestación de los mecanismos de supervivencia y adaptación’, Colombia Médica, 38(2), pp. 149–158.
Calo, J. R. et al. (2015) ‘Essential oils as antimicrobials in food systems – A review’, Food Control. Elsevier Ltd, 54, pp. 111–119. doi: 10.1016/j.foodcont.2014.12.040.
Cardoso-Ugarte, G. A., López-Malo, A. and Sosa-Morales, M. E. (2016) ‘Cinnamon (Cinnamomum zeylanicum) Essential Oils’, in Preedy, V. R. (ed.) Essential Oils in Food Preservation, Flavor and Safety. San Diego: Academic Press., pp. 339–347. doi: http://dx.doi.org/10.1016/B978-0-12-416641-7.00038-9.
CDC (2019) Burden of Foodborne Illness: Findings | Estimates of Foodborne Illness. Available at: https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html (Accessed: 19 March 2020).
CDC (2020) Outbreaks Involving Salmonella. Available at: https://www.cdc.gov/salmonella/outbreaks.html (Accessed: 29 March 2020).
Coronel-León, J. et al. (2015) ‘Optimizing the production of the biosurfactant lichenysin and its application in biofilm control’, Journal of Applied Microbiology, 120(1), pp. 99–111. doi: 10.1111/jam.12992.
Duan, J. and Zhao, Y. (2009) ‘Antimicrobial efficiency of essential oil and freeze-thaw treatments against Escherichia coli O157:H7 and Salmonella enterica Ser. Enteritidis in strawberry juice’, Journal of food science, 74(3), pp. M131–M137.
Echegoyen, Y. and Nerín, C. (2015) ‘Performance of an active paper based on cinnamon essential oil in mushrooms quality’, Food Chemistry, 170, pp. 30–36. doi: http://dx.doi.org/10.1016/j.foodchem.2014.08.032.
Emiro?lu, Z. K. et al. (2010) ‘Antimicrobial activity of soy edible fi lms incorporated with thyme and oregano essential oils on fresh ground beef patties’, 86, pp. 283–288. doi: 10.1016/j.meatsci.2010.04.016.
Franz, C. and Novak, J. (2009) ‘Sources of essential oils.’, in Handbook of Essential Oils: Science, Technology, and Applications, pp. 217–220.
Hansen, C. M. (2007) Hansen Solubility Parameters. 2nd edn, Journal of Chemical Information and Modeling. 2nd edn. doi: 10.1017/CBO9781107415324.004.
Jahid, I. K. and Ha, S. Do (2012) ‘A review of microbial biofilms of produce: Future challenge to food safety’, Food Science and Biotechnology, 21(2), pp. 299–316. doi: 10.1007/s10068-012-0041-1.
Jamshidian, M. et al. (2010) ‘Poly-Lactic Acid?: Production , Applications , Nanocomposites , and Release Studies’, 9, pp. 552–571. doi: 10.1111/j.1541-4337.2010.00126.x.
Kwon, J. A., Yu, C. B. and Park, H. D. (2003) ‘Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus’, pp. 61–65.
Lambert, R. J. W. et al. (2001) ‘A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol’, Journal of Applied Microbiology, 91(3), pp. 453–462. doi: 10.1046/j.1365-2672.2001.01428.x.
Lv, F. et al. (2011) ‘In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms’, Food Research International. Elsevier Ltd, 44(9), pp. 3057–3064. doi: 10.1016/j.foodres.2011.07.030.
Nostro, A. et al. (2007) ‘Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms’, Journal of Medical Microbiology, 56(4), pp. 519–523. doi: 10.1099/jmm.0.46804-0.
Oussalah, M. et al. (2006) ‘Antimicrobial Effects of Alginate-Based Film Containing Essential Oils for the Preservation of Whole Beef Muscle’, 69(10), pp. 2364–2369.
Oussalah, M. et al. (2007) ‘Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes’, Food Control, 18(5), pp. 414–420. doi: 10.1016/j.foodcont.2005.11.009.
Pazmiño, A., Campuzano, A. and Marín, K. (2020) ‘Efecto de inhibición del aceite esencial de orégano en una película biodegradable activa de ácido poliláctico’, Revista Bases de la Ciencia, 5(1), pp. 41–50.
Pesavento, G. et al. (2015) ‘Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs’, Food Control. Elsevier Ltd, 54, pp. 188–199. doi: 10.1016/j.foodcont.2015.01.045.
Qin, Y. et al. (2016) ‘Development of active packaging film made from poly (lactic acid) incorporated essential oil’, Progress in Organic Coatings. Elsevier B.V. doi: 10.1016/j.porgcoat.2016.10.017.
Rhayour, K. et al. (2003) ‘The Mechanism of Bactericidal Action of Oregano and Clove Essential Oils and of their Phenolic Major Components on Escherichia coli and Bacillus subtilis’, Journal of Essential Oil Research, 15(4), pp. 286–292. doi: 10.1080/10412905.2003.9712144.
Ruellan, A. et al. (2015) ‘Manufacturing of advanced biodegradable polymeric components’, Journal of Applied Polymer Science, 132(48), p. n/a-n/a. doi: 10.1002/app.42889.
Scaffaro, R. et al. (2018) ‘Antimicrobial additives for poly ( lactic acid ) materials and their applications?: current state and perspectives’. Applied Microbiology and Biotechnology.
Scallan, E. et al. (2011) ‘Foodborne Illness Acquired in the United States—Major Pathogens’, Emerging Infectious Diseases, 17(1), pp. 7–15. doi: 10.3201/eid1701.P11101.
Sheng, L. and Zhu, M. J. (2014) ‘Inhibitory effect of Cinnamomum cassia oil on non-O157 Shiga toxin-producing Escherichia coli’, Food Control, 46, pp. 374–381.
Silveira, S. M. D. et al. (2012) ‘Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the south of Brazil against food spoilage and foodborne pathogens’, Ciência Rural, 42(7), pp. 1300–1306.
Sung, S.-Y. et al. (2013) ‘Antimicrobial agents for food packaging applications’, Trends in Food Science & Technology. Elsevier Ltd, 33(2), pp. 110–123. doi: 10.1016/j.tifs.2013.08.001.
Tauxe, R. V. et al. (2010) ‘Evolving public health approaches to the global challenge of foodborne infections’, International Journal of Food Microbiology. Elsevier B.V., 139(SUPPL. 1), pp. S16–S28. doi: 10.1016/j.ijfoodmicro.2009.10.014.
Ventura, M. et al. (2011) ‘Evaluación del rendimiento y la acción conservante en carne de cerdo del aceite esencial de orégano (Origanum vulgare L.) cultivado en seis zonas altoandinas de Amazonas’, 4(2), pp. 185–194.
WHO (2016) Datos y cifras sobre las enfermedades de transmisión alimentaria, WHO. World Health Organization. Available at: https://www.who.int/foodsafety/areas_work/foodborne-diseases/ferg_infographics/es/ (Accessed: 29 March 2020).
Yahyaoui, M. et al. (2016) ‘Development of novel antimicrobial films based on poly(lactic acid) an essential oils’, Reactive & Functional Polymers. Elsevier B.V. doi: 10.1016/j.reactfunctpolym.2016.09.001.
Ye, H. et al. (2013) ‘Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria’, Food Control. Elsevier Ltd, 34(2), pp. 619–623. doi: 10.1016/j.foodcont.2013.05.032.
Zeid, A. et al. (2019) ‘Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme , rosemary , and oregano essential oils’, (May), pp. 1–11. doi: 10.1111/jfpp.14102.
Zezzi do Valle Gomes, M. and Nitschke, M. (2012) ‘Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria’, Food Control. Elsevier Ltd, 25(2), pp. 441–447. doi: 10.1016/j.foodcont.2011.11.025