Characterization of graphene oxide synthesized through a modified Hummers method

Main Article Content

Wilson Navas-Pinto
Duncan E. Cree
Lee D. Wilson
Germán Omar Barrionuevo
Xavier Sánchez-Sánchez
Héctor Calvopiña

Abstract

Graphene oxide (GO) has garnered significant interest due to its exceptional and tunable properties, which make it a promising candidate for a wide range of engineering applications, including composite material fabrication and water treatment. In this study, GO was synthesized from graphite flakes using a modified Hummers method involving a reduced amount of sulfuric acid. The resulting material was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). These techniques enabled a clear differentiation between the morphology of the synthesized GO and that of the original graphite. The GO exhibited a substantially altered structure, with increased thickness likely due to the incorporation of oxygen-containing functional groups on its basal plane. FTIR analysis confirmed the presence of characteristic functional groups such as hydroxyl, carbonyl, and carboxyl. XPS analysis revealed that the elemental composition of the synthesized GO consisted of approximately 69.7% carbon and 29.9% oxygen, with a trace amount of sulfur attributed to the reagents used in the synthesis. The observed changes in morphology and composition suggest the successful synthesis of GO with potential for functionalization and application in diverse engineering contexts.

Article Details

Section
Scientific Paper

References

K. Gao, Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications. Springer International Publishing, 2015. [Online]. Available: https://doi.org/10.1007/978-3-319-15500-5

J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, “Mechanical properties of monolayer graphene oxide,” ACS Nano, vol. 4, no. 11, pp. 6557–6564, Oct. 2010. [Online]. Available: https://doi.org/10.1021/nn101781v

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, Jun. 2007. [Online]. Available: https://doi.org/10.1016/j.carbon.2007.02.034

M. Moazzami Gudarzi and F. Sharif, “Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide,” Express Polymer Letters, vol. 6, no. 12, pp.1017–1031, 2012. [Online]. Available: http://dx.doi.org/10.3144/expresspolymlett.2012.107

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Letters, vol. 9, no. 3, pp. 1058–1063, Feb. 2009. [Online]. Available: https://doi.org/10.1021/nl8034256

W. Zięba, K. Jurkiewicz, A. Burian, M. Pawlyta, S. Boncel, G. S. Szymański, J. Kubacki, P. Kowalczyk, K. Krukiewicz, A. Furuse, K. Kaneko, and A. P. Terzyk, “High-surface-area graphene oxide for next-generation energy storage applications,” ACS Applied Nano Materials, vol. 5, no. 12, pp. 18 448–18 461, Dec. 2022. [Online]. Available: http://dx.doi.org/10.1021/acsanm.2c04281

X. Mu, X. Wu, T. Zhang, D. B. Go, and T. Luo, “Thermal transport in graphene oxide – from ballistic extreme to amorphous limit,” Scientific Reports, vol. 4, no. 1, Jan. 2014. [Online]. Available: https://doi.org/10.1038/srep03909

X. Shen, X. Lin, J. Jia, Z. Wang, Z. Li, and J.-K. Kim, “Tunable thermal conductivities of graphene oxide by functionalization and tensile loading,” Carbon, vol. 80, pp. 235–245, Dec. 2014. [Online]. Available: https://doi.org/10.1016/j.carbon.2014.08.062

Z. Li, R. J. Young, R. Wang, F. Yang, L. Hao, W. Jiao, and W. Liu, “The role of functional groups on graphene oxide in epoxy nanocomposites,” Polymer, vol. 54, no. 21, pp. 5821–5829, Oct. 2013. [Online]. Available: https://doi.org/10.1016/j.polymer.2013.08.026

C. Botas, P. Álvarez, P. Blanco, M. Granda, C. Blanco, R. Santamaría, L. J. Romasanta, R. Verdejo, M. A. López-Manchado, and R. Menéndez, “Graphene materials with different structures prepared from the same graphite by the hummers and brodie methods,” Carbon, vol. 65, pp. 156–164, Dec. 2013. [Online]. Available: https://doi.org/10.1016/j.carbon.2013.08.009

R. K. Singh, R. Kumar, and D. P. Singh, “Graphene oxide: strategies for synthesis, reduction and frontier applications,” RSC Advances, vol. 6, no. 69, pp. 64 993–65 011, 2016. [Online]. Available: https://doi.org/10.1039/C6RA07626B

S. Jaworski, B. Strojny-Cieślak, M. Wierzbicki, M. Kutwin, E. Sawosz, M. Kamaszewski, A. Matuszewski, M. Sosnowska, J. Szczepaniak, K. Daniluk, A. Lange, M. Pruchniewski, K. Zawadzka, M. Łojkowski, and A. Chwalibog, “Comparison of the toxicity of pristine graphene and graphene oxide, using four biological models,” Materials, vol. 14, no. 15, p. 4250, Jul. 2021. [Online]. Available: https://doi.org/10.3390/ma14154250

P. Kumar, P. Huo, R. Zhang, and B. Liu, “Antibacterial properties of graphene-based nanomaterials,” Nanomaterials, vol. 9, no. 5, p. 737, May 2019. [Online]. Available: https://doi.org/10.3390/nano9050737

N. Mushahary, A. Sarkar, F. Basumatary, S. Brahma, B. Das, and S. Basumatary, “Recent developments on graphene oxide and its composite materials: From fundamentals to applications in biodiesel synthesis, adsorption, photocatalysis, supercapacitors, sensors and antimicrobial activity,” Results in Surfaces and Interfaces, vol. 15, p. 100225, May 2024. [Online]. Available: https://doi.org/10.1016/j.rsurfi.2024.100225

S. Wang, H. Yan, H. Zheng, Y. He, X. Guo, S. Li, and C. Yang, “Fast response humidity sensor based on chitosan/graphene oxide/tin dioxide composite,” Sensors and Actuators B: Chemical, vol. 392, p. 134070, Oct. 2023. [Online]. Available: https://doi.org/10.1016/j.snb.2023.134070

T. Liang, W. Hou, J. Ji, and Y. Huang, “Wrinkled reduced graphene oxide humidity sensor with fast response/recovery and flexibility for respiratory monitoring,” Sensors and Actuators A: Physical, vol. 350, p. 114104, Feb. 2023. [Online]. Available: https://doi.org/10.1016/j.sna.2022.114104

S. Kerli, S. Bhardwaj, W. Lın, and R. K. Gupta, “Silver-doped reduced graphene oxide/-pani composite synthesis and their supercapacitor applications,” Journal of Organometallic Chemistry, vol. 995, p. 122725, Aug. 2023. [Online]. Available: https://doi.org/10.1016/j.jorganchem.2023.122725

S. Nagarani, G. Sasikala, M. Yuvaraj, S. Balachandran, R. Dhilip Kumar, and M. Kumar, “Cost effective, metal free reduced graphene oxide sheet for high performance electrochemical capacitor application,” Materials Science and Engineering: B, vol. 284, p. 115852, Oct. 2022. [Online]. Available: https://doi.org/10.1016/j.mseb.2022.115852

S. Nagarani, J.-H. Chang, M. Yuvaraj, S. Balachandran, M. Kumar, and S. Kanimozhi, “Well-organized metal-free chemically reduced graphene oxide sheets as electrocatalysts for enhanced oxygen reduction reactions in alkaline media,” Materials Letters, vol. 357, p. 135705, Feb. 2024. [Online]. Available: https://doi.org/10.1016/j.matlet.2023.135705

J. Arévalo, J. Alfonso, O. Suarez, J. Olaya, and L. Moreno-Aldana, “Growth and physicalchemical characterization of manganese oxide and graphene-manganese oxide films for potential applications in energy store devices,” Results in Materials, vol. 22, p. 100574, Jun. 2024. [Online]. Available: https://doi.org/10.1016/j.rinma.2024.100574

A. Eftekhari, Y. M. Shulga, S. A. Baskakov, and G. L. Gutsev, “Graphene oxide membranes for electrochemical energy storage and conversion,” International Journal of Hydrogen Energy, vol. 43, no. 4, pp. 2307–2326, Jan. 2018. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2017.12.012

A. Joy, G. Unnikrishnan, M. Megha, M. Haris, J. Thomas, A. Deepti, P. Baby Chakrapani, E. Kolanthai, and S. Muthuswamy, “A novel combination of graphene oxide/palladium integrated polycaprolactone nanocomposite for biomedical applications,” Diamond and Related Materials, vol. 136, p. 110033, Jun. 2023. [Online]. Available: https://doi.org/10.1016/j.diamond.2023.110033

A. M. Sindi, “Applications of graphene oxide and reduced graphene oxide in advanced dental materials and therapies,” Journal of Taibah University Medical Sciences, vol. 19, no. 2, pp. 403–421, Apr. 2024. [Online]. Available: https://doi.org/10.1016/j.jtumed.2024.02.002

A. Loeffen, D. E. Cree, M. Sabzevari, and L. D. Wilson, “Effect of graphene oxide as a reinforcement in a bio-epoxy composite,” Journal of Composites Science, vol. 5, no. 3, p. 91, Mar. 2021. [Online]. Available: https://doi.org/10.3390/jcs5030091

J. Zhou, Z. Yao, Y. Chen, D. Wei, Y. Wu, and T. Xu, “Mechanical and thermal properties of graphene oxide/phenolic resin composite,” Polymer Composites, vol. 34, no. 8, pp. 1245–1249, Jun. 2013. [Online]. Available: http://dx.doi.org/10.1002/pc.22533

L. Yang, F. Jia, Z. Juan, D. Yu, L. Sun, Y. Wang, L. Huang, and J. Tang, “Bioinspired graphene oxide nanofiltration membranes with ultrafast water transport and selectivity for water treatment,” FlatChem, vol. 36, p. 100450, Nov. 2022. [Online]. Available https://doi.org/10.1016/j.flatc.2022.10040

C.-H. Yu, G.-Y. Chen, M.-Y. Xia, Y. Xie, Y.-Q. Chi, Z.-Y. He, C.-L. Zhang, T. Zhang, Q.-M. Chen, and Q. Peng, “Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms,” Colloids and Surfaces B: Biointerfaces, vol. 191, p. 111009, Jul. 2020. [Online]. Available: https://doi.org/10.1016/j.colsurfb.2020.111009

H. L. Poh, F. Šaněk, A. Ambrosi, G. Zhao, Z. Sofer, and M. Pumera, “Graphenes prepared by staudenmaier, hofmann and hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties,” Nanoscale, vol. 4, no. 11, p. 3515, 2012. [Online]. Available: https://doi.org/10.1039/C2NR30490B

N. Zaaba, K. Foo, U. Hashim, S. Tan, W.-W. Liu, and C. Voon, “Synthesis of graphene oxide using modified hummers method: Solvent influence,” Procedia Engineering, vol. 184, pp. 469–477, 2017. [Online]. Available: https://doi.org/10.1016/j.proeng.2017.04.118

C. Gómez-Navarro, M. Burghard, and K. Kern, “Elastic properties of chemically derived single graphene sheets,” Nano Letters, vol. 8, no. 7, pp. 2045–2049, Jun. 2008. [Online]. Available: https://doi.org/10.1021/nl801384y

K. Cao, S. Feng, Y. Han, L. Gao, T. Hue Ly, Z. Xu, and Y. Lu, “Elastic straining of free-standing monolayer graphene,” Nature Communications, vol. 11, no. 1, Jan. 2020. [Online]. Available: https://doi.org/10.1038/s41467-019-14130-0

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature, vol. 442, no. 7100, pp. 282–286, Jul. 2006. [Online]. Available: https://doi.org/10.1038/nature04969

M. Mehrabi Kooshki and A. Jalali-Arani, “High performance graphene oxide/epoxy nanocomposites fabricated through the solvent exchange method,” Polymer Composites, vol. 39, no. S4, Feb. 2018. [Online]. Available: https://doi.org/10.1002/pc.24803

B. Collins Brodie, “Xiii. on the atomic weight of graphite,” Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249–259, Dec. 1859. [Online]. Available: https://doi.org/10.1098/rstl.1859.0013

L. Staudenmaier, “Verfahren zur darstellung der graphitsäure,” Berichte der deutschen chemischen Gesellschaft, vol. 31, no. 2, pp. 1481–1487, May 1898. [Online]. Available: https://doi.org/10.1002/cber.18980310237

U. Hofmann and E. König, “Untersuchungen über graphitoxyd,” Zeitschrift für anorganische und allgemeine Chemie, vol. 234, no. 4, pp. 311–336, Dec. 1937. [Online]. Available: https://doi.org/10.1002/zaac.19372340405

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, no. 6, pp. 1339–1339, Mar. 1958. [Online]. Available: https://doi.org/10.1021/ja01539a017

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, Jul. 2010. [Online]. Available: https://doi.org/10.1021/nn1006368

J. Chen, B. Yao, C. Li, and G. Shi, “An improved hummers method for eco-friendly synthesis of graphene oxide,” Carbon, vol. 64, pp. 225–229, Nov. 2013. [Online]. Available: https://doi.org/10.1016/j.carbon.2013.07.055

Y. Zhu, G. Kong, Y. Pan, L. Liu, B. Yang, S. Zhang, D. Lai, and C. Che, “An improved hummers method to synthesize graphene oxide using much less concentrated sulfuric acid,” Chinese Chemical Letters, vol. 33, no. 10, pp. 4541–4544, Oct. 2022. [Online]. Available: https://doi.org/10.1016/j.cclet.2022.01.060

G. Surekha, K. V. Krishnaiah, N. Ravi, and R. Padma Suvarna, “Ftir, raman and xrd analysis of graphene oxide films prepared by modified hummers method,” Journal of Physics: Conference Series, vol. 1495, no. 1, p. 012012, Mar. 2020. [Online]. Available: http://dx.doi.org/10.1088/1742-6596/1495/1/012012

Rattana, S. Chaiyakun, N. Witit-anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, and P. Limsuwan, “Preparation and characterization of graphene oxide nanosheets,” Procedia Engineering, vol. 32, pp. 759–764, 2012. [Online]. Available: https://doi.org/10.1016/j.proeng.2012.02.009

M. Sabzevari, D. E. Cree, and L. D. Wilson, “Mechanical properties of graphene oxidebased composite layered-materials,” Materials Chemistry and Physics, vol. 234, pp. 81–89, Aug. 2019. [Online]. Available: https://doi.org/10.1016/j.matchemphys.2019.05.091

L.-L. Tan, W.-J. Ong, S.-P. Chai, and A. R. Mohamed, “Reduced graphene oxidetio2 nanocomposite as a promising visiblelight-active photocatalyst for the conversion of carbon dioxide,” Nanoscale Research Letters, vol. 8, no. 1, Nov. 2013. [Online]. Available: https://doi.org/10.1186/1556-276X-8-465

D. Galpaya, M. Wang, G. George, N. Motta, E. Waclawik, and C. Yan, “Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties,” Journal of Applied Physics, vol. 116, no. 5, Aug. 2014. [Online]. Available: https://doi.org/10.1063/1.4892089

E. Aliyev, V. Filiz, M. M. Khan, Y. J. Lee, C. Abetz, and V. Abetz, “Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris,” Nanomaterials, vol. 9, no. 8, p. 1180, Aug. 2019. [Online]. Available: https://doi.org/10.3390/nano9081180

F. Ren, G. Zhu, P. Ren, Y. Wang, and X. Cui, “In situ polymerization of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties,” Applied Surface Science, vol. 316, pp. 549–557, Oct. 2014. [Online]. Available: https://doi.org/10.1016/j.apsusc.2014.07.159

M. S. A. Sher Shah, A. R. Park, K. Zhang, J. H. Park, and P. J. Yoo, “Green synthesis of biphasic tio2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity,” ACS Applied Materials Interfaces, vol. 4, no. 8, pp. 3893–3901, Jul. 2012. [Online]. Available: https://doi.org/10.1021/am301287m

I. O. Faniyi, O. Fasakin, B. Olofinjana, A. S. Adekunle, T. V. Oluwasusi, M. A. Eleruja, and E. O. B. Ajayi, “The comparative analyses of reduced graphene oxide (rgo) prepared via green, mild and chemical approaches,” SN Applied Sciences, vol. 1, no. 10, Sep. 2019. [Online]. Available: https://doi.org/10.1007/s42452-019-1188-7

S. Kwon, K. E. Lee, H. Lee, S. J. Koh, J.-H. Ko, Y.-H. Kim, S. O. Kim, and J. Y. Park, “The effect of thickness and chemical reduction of graphene oxide on nanoscale friction,” The Journal of Physical Chemistry B, vol. 122, no. 2, pp. 543–547, Oct. 2017. [Online]. Available: https://doi.org/10.1021/acs.jpcb.7b04609

S. Gadipelli and Z. X. Guo, “Graphene-based materials: Synthesis and gas sorption, storage and separation,” Progress in Materials Science, vol. 69, pp. 1–60, Apr. 2015. [Online]. Available: https://doi.org/10.1016/j.pmatsci.2014.10.004

S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, “Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites,” Composites Part B: Engineering, vol. 39, no. 6, pp. 933–961, Sep. 2008. [Online]. Available: https://doi.org/10.1016/j.compositesb.2008.01.002

S. Siraj, A. H. Al-Marzouqi, M. Z. Iqbal, and W. Ahmed, “Impact of micro silica filler particle size on mechanical properties of polymeric based composite material,” Polymers, vol. 14, no. 22, p. 4830, Nov. 2022. [Online]. Available: https://doi.org/10.3390/polym14224830

L. H. Grey, H.-Y. Nie, and M. C. Biesinger, “Defining the nature of adventitious carbon and improving its merit as a charge correction reference for xps,” Applied Surface Science, vol. 653, p. 159319, Apr. 2024. [Online]. Available: https://doi.org/10.1016/j.apsusc.2024.159319

R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, and M. Atieh, “Xps and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods,” Ceramics International, vol. 45, no. 11, pp. 14 439–14 448, Aug. 2019. [Online]. Available: https://doi.org/10.1016/j.ceramint.2019.04.165