Exploring deep generative models for improved data generation in hypertrophic cardiomyopathy

Main Article Content

Swarajya Madhuri Rayavarapu
Gottapu Sasibhushana Rao

Abstract

Data generation strategies are essential for addressing the challenge of limited training data in deep learning-based medical image analysis, particularly for hypertrophic cardiomyopathy (HCM) using magnetic resonance imaging (MRI). Unlike traditional augmentation techniques, deep generative models can synthesize novel and diverse MRI images, enriching the training datasets. This study evaluates several generative models, including Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Deep Convolutional GANs (DCGANs), Auxiliary Classifier GANs (ACGANs), InfoGANs, and Diffusion Models, using the Structural Similarity Index Measure (SSIM) and Cross-Correlation Coefficient (CC) to assess image quality and structural fidelity. While VAEs demonstrated limitations such as noticeable noise and blurriness, GAN-based models, particularly DCGANs and ACGANs, generated higher-quality and anatomically accurate images. Diffusion models achieved the highest image fidelity among all the methods evaluated, but required longer generation times. These findings underscore the trade-off between image quality and computational efficiency and highlight the potential of deep generative models to augment MRI datasets, thereby improving deep learning applications for HCM diagnosis.

Article Details

Section
Scientific Paper

References

C. González García, E. Núñez-Valdez, V. García- Díaz, C. Pelayo G-Bustelo, and J. M. Cueva- Lovelle, “A review of artificial intelligence in the internet of things,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 5, no. 4, p. 9, 2019. [Online]. Available: http://dx.doi.org/10.9781/ijimai.2018.03.004

Y. Shen, L. Chen, J. Liu, H. Chen, C. Wang, H. Ding, and Q. Zhang, “Pads-net: Ganbased radiomics using multi-task network of denoising and segmentation for ultrasonic diagnosis of parkinson disease,” Computerized Medical Imaging and Graphics, vol. 120, p. 102490, Mar. 2025. [Online]. Available: https://doi.org/10.1016/j.compmedimag.2024.102490

H. Zhang and Y. Qie, “Applying deep learning to medical imaging: A review,” Applied Sciences, vol. 13, no. 18, p. 10521, Sep. 2023. [Online]. Available: https://doi.org10.3390/app131810521

M. Rana and M. Bhushan, “Machine learning and deep learning approach for medical image analysis: diagnosis to detection,” Multimedia Tools and Applications, vol. 82, no. 17, pp. 26 731–26 769, Dec. 2022. [Online]. Available: https://doi.org/10.1007/s11042-022-14305-w

X. Liu, H. Wang, Z. Li, and L. Qin, “Deep learning in ecg diagnosis: A review,” Knowledge-Based Systems, vol. 227, p. 107187, Sep. 2021. [Online]. Available: https://doi.org/10.1016/j.knosys.2021.107187

S. K. Mathivanan, S. Srinivasan, M. S. Koti, V. S. Kushwah, R. B. Joseph, and M. A. Shah, “A secure hybrid deep learning framework for brain tumor detection and classification,” Journal of Big Data, vol. 12, no. 1, Mar. 2025. [Online]. Available: https://doi.org/10.1186/s40537-025-01117-6

C. Chola, P. Mallikarjuna, A. Y. Muaad, J. V. Bibal Benifa, J. Hanumanthappa, and M. A. Al-antari, “A hybrid deep learning approach for covid-19 diagnosis via ct and x-ray medical images,” in The 1st International Electronic Conference on Algorithms, ser. IOCA 2021. MDPI, Sep. 2021, p. 13. [Online]. Available: https://doi.org/10.3390/IOCA2021-10909

F. Y. Shih and H. Patel, “Deep learning classification on optical coherence tomography retina images,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 34, no. 08, p. 2052002, Oct. 2019. [Online]. Available: https://doi.org/10.1142/S0218001420520023

P. Gupta, S. Nandakumar, M. Gupta, and G. Panda, “Data programming enabled weak supervised labeling for ecg time series,” Biomedical Signal Processing and Control, vol. 87, p. 105540, Jan. 2024. [Online]. Available: https://doi.org10.1016/j.bspc.2023.105540

S. U. Amin, A. Hussain, B. Kim, and S. Seo, “Deep learning based active learning technique for data annotation and improve the overall performance of classification models,” Expert Systems with Applications, vol. 228, p. 120391, Oct. 2023. [Online]. Available: https://doi.org/10.1016/j.eswa.2023.120391

T. Liu, W. Fan, and C. Wu, “A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset,” Artificial Intelligence in Medicine, vol. 101, p. 101723, Nov. 2019. [Online]. Available: https://doi.org/10.1016/j.artmed.2019.101723

T. Islam, M. S. Hafiz, J. R. Jim, M. M. Kabir, and M. Mridha, “A systematic review of deep learning data augmentation in medical imaging: Recent advances and future research directions,” Healthcare Analytics, vol. 5, p. 100340, Jun. 2024. [Online]. Available: https://doi.org/10.1016/j.health.2024.100340

N. Nonaka and J. Seita, “Data augmentation for electrocardiogram classification with deep neural network,” arXiv, 2020. [Online]. Available: https://doi.org/10.48550/arXiv.2009.04398

M. M. Rahman, M. W. Rivolta, F. Badilini, and R. Sassi, “A systematic survey of data augmentation of ecg signals for ai applications,” Sensors, vol. 23, no. 11, p. 5237, May 2023. [Online]. Available: http://doi.org/10.3390/s23115237

F. J. Moreno-Barea, J. M. Jerez, and L. Franco, “Improving classification accuracy using data augmentation on small data sets,” Expert Systems with Applications, vol. 161, p. 113696, Dec. 2020. [Online]. Available: https://doi.org/10.1016/j.eswa.2020.113696

J. Saldanha, S. Chakraborty, S. Patil, K. Kotecha, S. Kumar, and A. Nayyar, “Data augmentation using variational autoencoders for improvement of respiratory disease classification,” PLOS ONE, vol. 17, no. 8, p. e0266467, Aug. 2022. [Online]. Available: https://doi.org/10.1371/journal.pone.0266467

D. Bhattacharya, S. Banerjee, S. Bhattacharya, B. Uma Shankar, and S. Mitra, GAN-Based Novel Approach for Data Augmentation with Improved Disease Classification. Springer Singapore, Dec. 2019, pp. 229–239. [Online]. Available: https://doi.org/10.1007/978-981-15-1100-4_11

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv, 2013. [Online]. Available: https://doi.org/10.48550/arXiv.1312.6114

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv, 2014. [Online]. Available: https://doi.org/10.48550/arXiv.1406.2661

Y. Skandarani, P.-M. Jodoin, and A. Lalande, “Gans for medical image synthesis: An empirical study,” Journal of Imaging, vol. 9, no. 3, p. 69, Mar. 2023. [Online]. Available: https://doi.org10.3390/jimaging9030069

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv, 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1511.06434

A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifie gans,” arXiv, 2016. [Online]. Available: https://doi.org/10.48550/arXiv.1610.09585

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan: Interpretable representation learning by information maximizing generative adversarial nets,” arXiv, 2016. [Online]. Available: https://doi.org/10.48550/arXiv.1606.03657

J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” arXiv, 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1503.03585

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” arXiv, 2020. [Online]. Available: https://doi.org/10.48550/arXiv.2006.11239

F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion models in vision: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 9, pp. 10 850–10 869, Sep. 2023. [Online]. Available: https://doi.org/10.1109/TPAMI.2023.3261988

Z. Guo, J. Liu, Y. Wang, M. Chen, D. Wang, D. Xu, and J. Cheng, “Diffusion models in bioinformatics: A new wave of deep learning revolution in action,” arXiv, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.10907

O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P.-A. Heng, I. Cetin, K. Lekadir, O. Camara, M. A. Gonzalez Ballester, G. Sanroma, S. Napel, S. Petersen, G. Tziritas, E. Grinias, M. Khened, V. A. Kollerathu, G. Krishnamurthi, M.-M. Rohé, X. Pennec, M. Sermesant, F. Isensee, P. Jäger, K. H. Maier-Hein, P. M. Full, I. Wolf, S. Engelhardt, C. F. Baumgartner, L. M. Koch, J. M. Wolterink, I. Išgum, Y. Jang, Y. Hong, J. Patravali, S. Jain, O. Humbert, and P.-M. Jodoin, “Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved?” IEEE Transactions on Medical Imaging, vol. 37, no. 11, pp. 2514–2525, Nov. 2018. [Online]. Available: http://doi.org/10.1109/TMI.2018.2837502

H. Sheikh, M. Sabir, and A. Bovik, “A statistical evaluation of recent full reference image quality assessment algorithms,” IEEE Transactions on Image Processing, vol. 15, no. 11, pp. 3440–3451, Nov. 2006. [Online]. Available: http://doi.org/10.1109/TIP.2006.881959

G. Prieto, E. Guibelalde, M. Chevalier, and A. Turrero, “Use of the cross-correlation component of the multiscale structural similarity metric (r* metric) for the evaluation of medical images,” Medical Physics, vol. 38, no. 8, pp. 4512–4517, Jul. 2011. [Online]. Available: https://doi.org/10.1118/1.3605634

A. Borji, “Pros and cons of gan evaluation measures: New developments,” arXiv, 2021. [Online]. Available: https://doi.org/10.48550/arXiv.2103.09396