Exploring deep generative models for improved data generation in hypertrophic cardiomyopathy
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 4.0 Ecuador license: they can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to the Universidad Politécnica Salesiana of Ecuador for printed editions.
It is also stated that they have respected the ethical principles of research and are free from any conflict of interest. The author(s) certify that this work has not been published, nor is it under consideration for publication in any other journal or editorial work.
The author (s) are responsible for their content and have contributed to the conception, design and completion of the work, analysis and interpretation of data, and to have participated in the writing of the text and its revisions, as well as in the approval of the version which is finally referred to as an attachment.
References
C. González García, E. Núñez-Valdez, V. García- Díaz, C. Pelayo G-Bustelo, and J. M. Cueva- Lovelle, “A review of artificial intelligence in the internet of things,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 5, no. 4, p. 9, 2019. [Online]. Available: http://dx.doi.org/10.9781/ijimai.2018.03.004
Y. Shen, L. Chen, J. Liu, H. Chen, C. Wang, H. Ding, and Q. Zhang, “Pads-net: Ganbased radiomics using multi-task network of denoising and segmentation for ultrasonic diagnosis of parkinson disease,” Computerized Medical Imaging and Graphics, vol. 120, p. 102490, Mar. 2025. [Online]. Available: https://doi.org/10.1016/j.compmedimag.2024.102490
H. Zhang and Y. Qie, “Applying deep learning to medical imaging: A review,” Applied Sciences, vol. 13, no. 18, p. 10521, Sep. 2023. [Online]. Available: https://doi.org10.3390/app131810521
M. Rana and M. Bhushan, “Machine learning and deep learning approach for medical image analysis: diagnosis to detection,” Multimedia Tools and Applications, vol. 82, no. 17, pp. 26 731–26 769, Dec. 2022. [Online]. Available: https://doi.org/10.1007/s11042-022-14305-w
X. Liu, H. Wang, Z. Li, and L. Qin, “Deep learning in ecg diagnosis: A review,” Knowledge-Based Systems, vol. 227, p. 107187, Sep. 2021. [Online]. Available: https://doi.org/10.1016/j.knosys.2021.107187
S. K. Mathivanan, S. Srinivasan, M. S. Koti, V. S. Kushwah, R. B. Joseph, and M. A. Shah, “A secure hybrid deep learning framework for brain tumor detection and classification,” Journal of Big Data, vol. 12, no. 1, Mar. 2025. [Online]. Available: https://doi.org/10.1186/s40537-025-01117-6
C. Chola, P. Mallikarjuna, A. Y. Muaad, J. V. Bibal Benifa, J. Hanumanthappa, and M. A. Al-antari, “A hybrid deep learning approach for covid-19 diagnosis via ct and x-ray medical images,” in The 1st International Electronic Conference on Algorithms, ser. IOCA 2021. MDPI, Sep. 2021, p. 13. [Online]. Available: https://doi.org/10.3390/IOCA2021-10909
F. Y. Shih and H. Patel, “Deep learning classification on optical coherence tomography retina images,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 34, no. 08, p. 2052002, Oct. 2019. [Online]. Available: https://doi.org/10.1142/S0218001420520023
P. Gupta, S. Nandakumar, M. Gupta, and G. Panda, “Data programming enabled weak supervised labeling for ecg time series,” Biomedical Signal Processing and Control, vol. 87, p. 105540, Jan. 2024. [Online]. Available: https://doi.org10.1016/j.bspc.2023.105540
S. U. Amin, A. Hussain, B. Kim, and S. Seo, “Deep learning based active learning technique for data annotation and improve the overall performance of classification models,” Expert Systems with Applications, vol. 228, p. 120391, Oct. 2023. [Online]. Available: https://doi.org/10.1016/j.eswa.2023.120391
T. Liu, W. Fan, and C. Wu, “A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset,” Artificial Intelligence in Medicine, vol. 101, p. 101723, Nov. 2019. [Online]. Available: https://doi.org/10.1016/j.artmed.2019.101723
T. Islam, M. S. Hafiz, J. R. Jim, M. M. Kabir, and M. Mridha, “A systematic review of deep learning data augmentation in medical imaging: Recent advances and future research directions,” Healthcare Analytics, vol. 5, p. 100340, Jun. 2024. [Online]. Available: https://doi.org/10.1016/j.health.2024.100340
N. Nonaka and J. Seita, “Data augmentation for electrocardiogram classification with deep neural network,” arXiv, 2020. [Online]. Available: https://doi.org/10.48550/arXiv.2009.04398
M. M. Rahman, M. W. Rivolta, F. Badilini, and R. Sassi, “A systematic survey of data augmentation of ecg signals for ai applications,” Sensors, vol. 23, no. 11, p. 5237, May 2023. [Online]. Available: http://doi.org/10.3390/s23115237
F. J. Moreno-Barea, J. M. Jerez, and L. Franco, “Improving classification accuracy using data augmentation on small data sets,” Expert Systems with Applications, vol. 161, p. 113696, Dec. 2020. [Online]. Available: https://doi.org/10.1016/j.eswa.2020.113696
J. Saldanha, S. Chakraborty, S. Patil, K. Kotecha, S. Kumar, and A. Nayyar, “Data augmentation using variational autoencoders for improvement of respiratory disease classification,” PLOS ONE, vol. 17, no. 8, p. e0266467, Aug. 2022. [Online]. Available: https://doi.org/10.1371/journal.pone.0266467
D. Bhattacharya, S. Banerjee, S. Bhattacharya, B. Uma Shankar, and S. Mitra, GAN-Based Novel Approach for Data Augmentation with Improved Disease Classification. Springer Singapore, Dec. 2019, pp. 229–239. [Online]. Available: https://doi.org/10.1007/978-981-15-1100-4_11
D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv, 2013. [Online]. Available: https://doi.org/10.48550/arXiv.1312.6114
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv, 2014. [Online]. Available: https://doi.org/10.48550/arXiv.1406.2661
Y. Skandarani, P.-M. Jodoin, and A. Lalande, “Gans for medical image synthesis: An empirical study,” Journal of Imaging, vol. 9, no. 3, p. 69, Mar. 2023. [Online]. Available: https://doi.org10.3390/jimaging9030069
A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv, 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1511.06434
A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifie gans,” arXiv, 2016. [Online]. Available: https://doi.org/10.48550/arXiv.1610.09585
X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan: Interpretable representation learning by information maximizing generative adversarial nets,” arXiv, 2016. [Online]. Available: https://doi.org/10.48550/arXiv.1606.03657
J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” arXiv, 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1503.03585
J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” arXiv, 2020. [Online]. Available: https://doi.org/10.48550/arXiv.2006.11239
F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion models in vision: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 9, pp. 10 850–10 869, Sep. 2023. [Online]. Available: https://doi.org/10.1109/TPAMI.2023.3261988
Z. Guo, J. Liu, Y. Wang, M. Chen, D. Wang, D. Xu, and J. Cheng, “Diffusion models in bioinformatics: A new wave of deep learning revolution in action,” arXiv, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.10907
O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P.-A. Heng, I. Cetin, K. Lekadir, O. Camara, M. A. Gonzalez Ballester, G. Sanroma, S. Napel, S. Petersen, G. Tziritas, E. Grinias, M. Khened, V. A. Kollerathu, G. Krishnamurthi, M.-M. Rohé, X. Pennec, M. Sermesant, F. Isensee, P. Jäger, K. H. Maier-Hein, P. M. Full, I. Wolf, S. Engelhardt, C. F. Baumgartner, L. M. Koch, J. M. Wolterink, I. Išgum, Y. Jang, Y. Hong, J. Patravali, S. Jain, O. Humbert, and P.-M. Jodoin, “Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved?” IEEE Transactions on Medical Imaging, vol. 37, no. 11, pp. 2514–2525, Nov. 2018. [Online]. Available: http://doi.org/10.1109/TMI.2018.2837502
H. Sheikh, M. Sabir, and A. Bovik, “A statistical evaluation of recent full reference image quality assessment algorithms,” IEEE Transactions on Image Processing, vol. 15, no. 11, pp. 3440–3451, Nov. 2006. [Online]. Available: http://doi.org/10.1109/TIP.2006.881959
G. Prieto, E. Guibelalde, M. Chevalier, and A. Turrero, “Use of the cross-correlation component of the multiscale structural similarity metric (r* metric) for the evaluation of medical images,” Medical Physics, vol. 38, no. 8, pp. 4512–4517, Jul. 2011. [Online]. Available: https://doi.org/10.1118/1.3605634
A. Borji, “Pros and cons of gan evaluation measures: New developments,” arXiv, 2021. [Online]. Available: https://doi.org/10.48550/arXiv.2103.09396