Neural network-based robot localization using visual features

Main Article Content

Felipe Trujillo-Romero

Abstract

This paper outlines the development of a module capable of constructing a map-building algorithm using inertial odometry and visual features. It incorporates an object recognition module that leverages local features and unsupervised artificial neural networks to identify non-dynamic elements in a room and assign them positions. The map is modeled using a neural network, where each neuron corresponds to an absolute position in the room. Once the map is constructed, capturing just a couple of images of the environment is sufficient to estimate the robot's location. The experiments were conducted using both simulation and a real robot. The Webots environment with the virtual humanoid robot NAO was used for the simulations. Concurrently, results were obtained using a real NAO robot in a setting with various objects. The results demonstrate notable precision in localization within the two-dimensional maps, achieving an accuracy of ± (0.06, 0.1) m in simulations contrasted with the natural environment, where the best value achieved was ± (0.25, 0.16) m.

Article Details

Section
Scientific Paper

References

IFR. (2024) Homepage. International Federation of Robotics. International Federation of Robotics. [Online]. Available: https://ifr.org/

Y. Omori, T. Furukawa, T. Ishikawa, and M. Inaba, “Humanoid vision design for object detection, localization and mapping in indoor environments,” in 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2018, pp. 1–6. [Online]. Available: https://doi.org/10.1109/SSRR.2018.8468604

X. Cui, M. Wang, B. Fan, and J. Yi, “Target detection based on binocular stereo vision,” in 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC), 2017, pp. 1093–1097. [Online]. Available: https://doi.org/10.1109/ICCTEC.2017.00239

R. Scona, S. Nobili, Y. R. Petillot, and M. Fallon, “Direct visual slam fusing proprioception for a humanoid robot,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 1419–1426. [Online]. Available: https://doi.org/10.1109/IROS.2017.8205943

L. K. Garzón Obregón, L. A. Forero Rincón, and O. M. Duque Suárez, “Diseño e implementación de un sistema de visión artificial usando una técnica de mapeo y localización simultánea (SLAM) sobre una plataforma robótica móvil,” Mundo FESC, vol. 8, no. 16, pp. 8–17, 2018. [Online]. Available: https://is.gd/pqjvTy

F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart, “Topomap: Topological mapping and navigation based on visual slam maps,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 3818–3825. [Online]. Available: https://doi.org/10.1109/ICRA.2018.8460641

E. Ovalle-Magallanes, N. G. Aldana-Murillo, J. G. Avina-Cervantes, J. Ruiz-Pinales, J. Cepeda-Negrete, and S. Ledesma, “Transfer learning for humanoid robot appearance-based localization in a visual map,” IEEE Access, vol. 9, pp. 6868–6877, 2021. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.3048936

T. Lasguignes, I. Maroger, M. Fallon, M. Ramezani, L. Marchionni, O. Stasse, N. Mansard, and B. Watier, “Icp localization and walking experiments on a talos humanoid robot,” in 2021 20th International Conference on Advanced Robotics (ICAR), 2021, pp. 800–805. [Online]. Available: https://doi.org/10.1109/ICAR53236.2021.9659474

P. Wozniak, H. Afrisal, R. G. Esparza, and B. Kwolek, “Scene recognition for indoor localization of mobile robots using deep cnn,” in Computer Vision and Graphics, L. J. Chmielewski, R. Kozera, A. Orlowski, K. Wojciechowski, A. M. Bruckstein, and N. Petkov, Eds. Cham: Springer International Publishing, 2018, pp. 137–147. [Online]. Available: https://doi.org/10.1007/978-3-030-00692-1_13

E. S. Lahemer and A. Rad, “An adaptive augmented vision-based ellipsoidal slam for indoor environments,” Sensors, vol. 19, no. 12, 2019. [Online]. Available: https://doi.org/10.3390/s19122795

T.-j. Lee, C.-h. Kim, and D.-i. D. Cho, “A monocular vision sensor-based efficient slam method for indoor service robots,” IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 318–328, 2019. [Online]. Available: https://doi.org/10.1109/TIE.2018.2826471

M. Fourmy, D. Atchuthan, N. Mansard, J. Sola, and T. Flayols, “Absolute humanoid ocalization and mapping based on imu lie group and fiducial markers,” in 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), 2019, pp. 237–243. [Online]. Available: https://doi.org/10.1109/Humanoids43949.2019.9035005

S. J. Dignadice, J. R. Red, A. J. Bautista, A. Perol, A. Ollanda, and R. Santos, “Application of simultaneous localization and mapping in the development of an autonomous robot,” in 2022 8th International Conference on Control, Automation and Robotics (ICCAR), 2022, pp. 77–80. [Online]. Available: https://doi.org/10.1109/ICCAR55106.2022.9782658

S. Wen, M. Sheng, C. Ma, Z. Li, H. K. Lam, Y. Zhao, and J. Ma, “Camera recognition and laser detection based on ekf-slam in the autonomous navigation of humanoid robot,” Journal of Intelligent & Robotic Systems, vol. 92, no. 2, pp. 265–277, Oct 2018. [Online]. Available: https://doi.org/10.1007/s10846-017-0712-5

X. Deng, Z. Zhang, A. Sintov, J. Huang, and T. Bretl, “Feature-constrained active visual slam for mobile robot navigation,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 7233–7238. [Online]. Available: https://doi.org/10.1109/ICRA.2018.8460721

A. Li, J. Wang, M. Xu, and Z. Chen, “DP-SLAM: A visual SLAM with moving probability towards dynamic environments,” Information Sciences, vol. 556, pp. 128–142, 2021. [Online]. Available: https://doi.org/10.1016/j.ins.2020.12.019

N. Krombach, D. Droeschel, S. Houben, and S. Behnke, “Feature-based visual odometry prior for real-time semi-dense stereo slam,” Robotics and Autonomous Systems, vol. 109, pp. 38–58, 2018. [Online]. Available: https://doi.org/10.1016/j.robot.2018.08.002

Y. S. Jiyu Cheng and M. Q.-H. Meng, “Improving monocular visual slam in dynamic environments: an optical-flow-based approach,” Advanced Robotics, vol. 33, no. 12, pp. 576–589, 2019. [Online]. Available: https://doi.org/10.1080/01691864.2019.1610060

S. Ganesan and S. K. Natarajan, “A novel directional sampling-based path planning algorithm for ambient intelligence navigation scheme in autonomous mobile robots,” Journal of Ambient Intelligence and Smart Environments, vol. 15, pp. 269–284, 2023, 3. [Online]. Available: https://doi.org/10.3233/AIS-220292

K. Zhang, H. Gui, Z. Luo, and D. Li, “Matching for navigation map building for automated guided robot based on laser navigation without a reflector,” Industrial Robot: the international journal of robotics research and application, vol. 46, no. 1, pp. 17–30, Jan 2019. [Online]. Available: https://doi.org/10.1108/IR-05-2018-0096

C. Wang, J. Wang, C. Li, D. Ho, J. Cheng, T. Yan, L. Meng, and M. Q.-H. Meng, “Safe and robust mobile robot navigation in uneven indoor environments,” Sensors, vol. 19, no. 13, 2019. [Online]. Available: https://doi.org/10.3390/s19132993

A. Roychoudhury, M. Missura, and M. Bennewitz, “3d polygonal mapping for humanoid robot navigation,” in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), 2022, pp. 171–177. [Online]. Available: https://doi.org/10.1109/Humanoids53995.2022.10000101

F. Martín, J. Ginés, D. Vargas, F. J. Rodríguez-Lera, and V. Matellán, “Planning topological navigation for complex indoor environments,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 1–9. [Online]. Available: https://doi.org/10.1109/IROS.2018.8594038

Aldebaran. Nao documentation. Aldebaran NAO Documentation. Aldebaran NAO Documentation. [Online]. Available: https://is.gd/eSNPWH

MIA. (2023) Mathematical image analysis group. MIA Group. MIA Group. [Online]. Available:

https://is.gd/69mEso

P. Fernández Alcantarilla, “Fast explicit diffusion for accelerated features in nonlinear scale spaces,” in British Machine Vision Conference (BMVC), 09 2013. [Online]. Available: http://dx.doi.org/10.5244/C.27.13

H. Scharr, Optimale Operatoren in der Digitalen Bildverarbeitung. University of Heidelberg,

Germany, 2000. [Online]. Available: https://doi.org/10.11588/heidok.00000962

X. Yang and K. Cheng, “Ldb: An ultrafast feature for scalable augmented reality on mobile devices,” 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 49–57, 2012. [Online]. Available: https://doi.org/10.1109/ISMAR.2012.6402537

B. Fritzke, “Growing cell structures—a selforganizing network for unsupervised and supervised learning,” Neural Networks, vol. 7, no. 9, pp. 1441–1460, 1994. [Online]. Available: https://doi.org/10.1016/0893-6080(94)90091-4

T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464–1480, 1990. [Online]. Available: https://doi.org/10.1109/5.58325

Cyberbotics. (2023) Simulating your robots with webots. Cyberbotics - Robotics simulation services. Cyberbotics - Robotics simulation services. [Online]. Available: https://is.gd/Q31yau

K. L. Flores-Rodríguez, F. Trujillo-Romero, and W. Suleiman, “Object recognition modular system implementation in a service robotics context,” in 2017 International Conference on Electronics, Communications and Computers (CONIELECOMP), 2017, pp. 1–6. [Online]. Available:

https://doi.org/10.1109/CONIELECOMP.2017.7891833