Reuse of Electrical Vehicle Batteries for Second Life Applications in Power Systems with a High Penetration of Renewable Energy: A Systematic Literature Review

Main Article Content

Abstract

This article presents a systematic literature review on the reuse of electric vehicle batteries (EVB) for second-life applications in power systems. The end-oflife of these batteries represents a major environmental problem due to their composition and materials. The study aims to analyze the reuse of EVBs as a sustainable alternative for the environment. Additionally, it seeks to provide complementary services to facilitate the incorporation of intermittent unconventional renewable generation into the electrical grid. Through an exhaustive search of scientific publications indexed in prestigious digital catalogs and their subsequent systematic treatment, a selected group of 49 scientific articles published between 2018 and 2023 have been found in which the different opportunities, benefits and limitations of second-life energy storage systems oriented to boost a circular economy have been identified. The study concludes that, although the reuse of batteries has not yet been fully addressed or implemented due to existing challenges in terms of technology, costs, and regulations, it is of utmost importance to delve deeper into its analysis to improve efficiency and reduce the environmental impacts associated with the manufacturing, use, and disposal of such batteries.

Article Details

Section
Mechanical Engineering

References

S. Sharma, A. K. Panwar, and M. Tripathi, “Storage technologies for electric vehicles,” Journal of Traffic and Transportation Engineering (English Edition), vol. 7, no. 3, pp. 340–361, 2020, special Issue: Clean Alternative Fuels for Transport Vehicles. [Online]. Available: https://doi.org/10.1016/j.jtte.2020.04.004

C. Peña Ordóñez and J. Pleite Guerra, Estudio de baterías para vehículos eléctricos. Departamento de Tecnología Electrónica, Universidad Carlos III de Madrid, 2011. [Online]. Available: https://bit.ly/46ka8Jd

W. Wu, B. Lin, C. Xie, R. J. Elliott, and J. Radcliffe, “Does energy storage provide a profitable second life for electric

vehicle batteries?” Energy Economics, vol. 92, p. 105010, 2020. [Online]. Available: https://doi.org/10.1016/j.eneco.2020.105010

J. Zhu, I. Mathews, D. Ren, W. Li, D. Cogswell, B. Xing, T. Sedlatschek, S. N. R. Kantareddy, M. Yi, T. Gao, Y. Xia, Q. Zhou, T. Wierzbicki, and M. Z. Bazant, “End-of-life or second-life options for retired electric vehicle batteries,” Cell Reports Physical Science, vol. 2, no. 8, p. 100537, 2021. [Online]. Available: https://doi.org/10.1016/j.xcrp.2021.100537

A. López, A. Ramírez-Díaz, I. Castilla-Rodríguez, J. Gurriarán, and J. Méndez-Pérez, “Wind farm energy surplus storage solution with second-life vehicle batteries in isolated grids,” Energy Policy, vol. 173, p. 113373, 2023. [Online]. Available:

https://doi.org/10.1016/j.enpol.2022.113373

Y. Li, S. Arnold, S. Husmann, and V. Presser, “Recycling and second life of mxene electrodes for lithium-ion batteries and sodiumion batteries,” Journal of Energy Storage, vol. 60, p. 106625, 2023. [Online]. Available: https://doi.org/10.1016/j.est.2023.106625

D. Galatro, D. A. Romero, C. Da Silva, O. Trescases, and C. H. Amon, “Impact of cell spreading on second-life of lithium-ion batteries,” The Canadian Journal of Chemical Engineering, vol. 101, no. 3, pp. 1114–1122, 2023. [Online]. Available: https://doi.org/10.1002/cjce.24570

C. H. Illa Font, H. V. Siqueira, J. E. Machado Neto, J. L. Ferreira dos Santos, S. L. Stevan, A. Converti, and F. C. Corrêa, “Second

life of lithium-ion batteries of electric vehicles: A short review and perspectives,” Energies,

vol. 16, no. 2, p. 953, 2023. [Online]. Available: https://doi.org/10.3390/en16020953

L. Janota, T. Králík, and J. Knápek, “Second life batteries used in energy storage for frequency containment reserve service,” Energies, vol. 13, no. 23, p. 6396, 2020. [Online]. Available: https://doi.org/10.3390/en13236396

M. Shahjalal, P. K. Roy, T. Shams, A. Fly, J. I. Chowdhury, M. R. Ahmed, and K. Liu, “A review on second-life of Li-ion batteries: prospects, challenges, and issues,” Energy, vol. 241, p. 122881, 2022. [Online]. Available: https://doi.org/10.1016/j.energy.2021.122881

E. Braco, I. San Martín, P. Sanchis, and A. Ursúa, “Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles,” Applied Energy, vol. 329, p. 120235, 2023. [Online]. Available: https://doi.org/10.1016/j.apenergy.2022.120235

M. F. Börner, M. H. Frieges, B. Späth, K. Spütz, H. H. Heimes, D. U. Sauer, and W. Li, “Challenges of second-life concepts for retired electric vehicle batteries,” Cell Reports Physical Science, vol. 3, no. 10, p. 101095, 2022. [Online]. Available:

https://doi.org/10.1016/j.xcrp.2022.101095

G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. D’haeseleer, “Distributed generation: definition, benefits and issues,” Energy Policy, vol. 33, no. 6, pp. 787–798, 2005. [Online]. Available: https://doi.org/10.1016/j.enpol.2003.10.004

J. Pastuszak and P. W¸egierek, “Photovoltaic cell generations and current research directions for their development,” Materials, vol. 15, no. 16, 2022. [Online]. Available: https://doi.org/10.3390/ma15165542

P. Pijarski, M. Wydra, and P. Kacejko, “Optimal control of wind power generation,” Advances in Science and Technology Research Journal, vol. 12, no. 1, pp. 9–18, 2018. [Online]. Available: https://doi.org/10.12913/22998624/81448

H. Lund, “Renewable energy strategies for sustainable development,” Energy, vol. 32, no. 6, pp. 912–919, 2007, third Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems. [Online]. Available: https://doi.org/10.1016/j.energy.2006.10.017

S. Chai, N. Z. Xu, M. Niu, K. W. Chan, C. Y. Chung, H. Jiang, and Y. Sun, “An evaluation framework for second-life EV/PHEV battery application in power systems,” IEEE Access, vol. 9, pp. 152 430–152 441, 2021. [Online]. Available:

https://doi.org/10.1109/ACCESS.2021.3126872

D. Ochoa, E. Villa, V. íIñiguez, C. Larco, and R. Sempértegui, “Uso de supercondensadores para brindar soporte de frecuencia en una microrred aislada,” RTE, vol. 34, no. 4, pp. 174–185, 2022. [Online]. Available: https://doi.org/10.37815/rte.v34n4.961

N. Horesh, C. Quinn, H. Wang, R. Zane, M. Ferry, S. Tong, and J. C. Quinn, “Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries,” Applied Energy,

vol. 295, p. 117007, 2021. [Online]. Available: https://doi.org/10.1016/j.apenergy.2021.117007

L. Codina, “Cómo hacer revisiones bibliográficas tradicionales o sistemáticas utilizando bases de datos académicas,” ORRL, vol. 11, no. 2, pp. 139–153, 2020. [Online]. Available: https://doi.org/10.14201/orl.22977

N. Jan van Eck and L. Waltman, VOSviewer Manual. Universiteit Leiden, Meaningful metrics, 2018. [Online]. Available: https://bit.ly/3R2P8lF

T. Montes, M. Etxandi-Santolaya, J. Eichman, V. J. Ferreira, L. Trilla, and C. Corchero, “Procedure for assessing the suitability of battery second life applications after EV first life,” Batteries, vol. 8, no. 9, 2022. [Online]. Available:

https://doi.org/10.3390/batteries8090122

H. S. Hayajneh, M. Lainfiesta Herrera, and X. Zhang, “Design of combined stationary and mobile battery energy storage

systems,” PLOS ONE, vol. 16, no. 12, pp. 1–21, 12 2021. [Online]. Available: https://doi.org/10.1371/journal.pone.0260547

E. Commission, Concerning batteries and waste batteries, repealing Directive 2006/66/EC and amendingRegulation (EU) No 2019/1020. EU Monitor, 2020. [Online]. Available: https://bit.ly/3MO2obv

Parlamento Europeo, Nuevas medidas europeas para que las baterías sean más sostenibles y éticas. Parlamento Europeo, 2022. [Online]. Available: https://bit.ly/3MMtobs

M. de la Presidencia, Real Decreto 265/2021 Reglamento General de Vehículos. Agencia Estatal Boletin General del Estado, 2021. [Online]. Available: https://bit.ly/47neIb2

I. Mathews, B. Xu, W. He, V. Barreto, T. Buonassisi, and I. M. Peters, “Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging,” Applied Energy, vol. 269, p. 115127, 2020. [Online]. Available:

https://doi.org/10.1016/j.apenergy.2020.115127

J. Ahuja, L. Dawson, and R. Lee, “A circular economy for electric vehicle batteries: driving the change,” Journal of Property, Planning and Environmental Law, vol. 12, no. 3, pp. 235–250, Jan 2020. [Online]. Available: https://doi.org/10.1108/JPPEL-02-2020-0011

B. M. Sopha, D. M. Purnamasari, and S. Ma’mun, “Barriers and enablers of circular economy implementation for electricvehicle batteries: From systematic literature review to conceptual framework,” Sustainability, vol. 14, no. 10, 2022. [Online]. Available: https://doi.org/10.3390/su14106359

Y. Kotak, C. Marchante Fernández, L. Canals Casals, B. S. Kotak, D. Koch, C. Geisbauer, L. Trilla, A. Gómez-Núñez, and H.-G. Schweiger, “End of electric vehicle batteries: Reuse vs. recycle,” Energies, vol. 14, no. 8, 2021. [Online]. Available: https://doi.org/10.3390/en14082217

S. I. Sun, A. J. Chipperfield, M. Kiaee, and R. G. Wills, “Effects of market dynamics on the time-evolving price of second-life electric vehicle batteries,” Journal of Energy Storage, vol. 19, pp. 41–51, 2018. [Online]. Available: https://doi.org/10.1016/j.est.2018.06.012

R. Sathre, C. D. Scown, O. Kavvada, and T. P. Hendrickson, “Energy and climate effects of second-life use of electric vehicle batteries in california through 2050,” Journal of Power Sources, vol. 288, pp. 82–91, 2015. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2015.04.097

J. Mendoza-Vizcaíno, A. Sumper, A. Sudria-Andreu, and J. Ramírez, “Renewable technologies for generation systems in islands and their application to Cozumel island, Mexico,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 348–361, 2016. [Online]. Available: https://doi.org/10.1016/j.rser.2016.06.014

L. Canals Casals, M. Barbero, and C. Corchero, “Reused second life batteries for aggregated demand response services,”

Journal of Cleaner Production, vol. 212, pp. 99–108, 2019. [Online]. Available: https://doi.org/10.1016/j.jclepro.2018.12.005

J. Thakur, C. Martins Leite de Almeida, and A. G. Baskar, “Electric vehicle batteries for a circular economy: Second life batteries as residential stationary storage,” Journal of Cleaner Production, vol. 375, p. 134066, 2022. [Online]. Available:

https://doi.org/10.1016/j.jclepro.2022.134066

F. Salek, A. Azizi, S. Resalati, P. Henshall, and D. Morrey, “Mathematical modelling and simulation of second life battery pack with heterogeneous state of health,” Mathematics, vol. 10, no. 20, 2022. [Online]. Available: https://doi.org/10.3390/math10203843

N. Kebir, A. Leonard, M. Downey, B. Jones, K. Rabie, S. M. Bhagavathy, and S. A. Hirmer, “Second-life battery systems for affordable energy access in kenyan primary schools,” Scientific Reports, vol. 13, no. 1, p. 1374, Jan 2023. [Online]. Available:

https://doi.org/10.1038/s41598-023-28377-7

L. Colarullo and J. Thakur, “Second-life EV batteries for stationary storage applications in local energy communities,” Renewable and Sustainable Energy Reviews, vol. 169, p. 112913, 2022. [Online]. Available: https://doi.org/10.1016/j.rser.2022.112913

A. Soto, A. Berrueta, P. Zorrilla, A. Iribarren, D. H. Castillo, W. E. Rodríguez, A. J. Rodríguez, D. T. Vargas, I. R. Matías, P. Sanchis, and A. Ursúa, “Integration of second-life battery packs for self-consumption applications: analysis of a real experience,” in 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial

and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2021, pp. 1–6. [Online]. Available: https://doi.org/10.1109/EEEIC/ ICPSEurope51590.2021.9584809

H. Ambrose, D. Gershenson, A. Gershenson, and D. Kammen, “Driving rural energy access: a second-life application for electric-vehicle batteries,” Environmental Research Letters, vol. 9, no. 9, p. 094004, sep 2014. [Online]. Available: https://dx.doi.org/10.1088/1748-9326/9/9/094004

S. Hu, H. Sun, F. Peng, W. Zhou, W. Cao, A. Su, X. Chen, and M. Sun, “Optimization strategy for economic power dispatch utilizing retired EV batteries as flexible loads,” Energies, vol. 11, no. 7, 2018. [Online]. Available: https://doi.org/10.3390/en11071657

J. Lacap, J. W. Park, and L. Beslow, “Development and demonstration of microgrid system utilizing second-life electric vehicle batteries,” Journal of Energy Storage, vol. 41, p. 102837, 2021. [Online]. Available: https://doi.org/10.1016/j.est.2021.102837

L. C. Casals, B. Amante García, and C. Canal, “Second life batteries lifespan: Rest of useful life and environmental analysis,” Journal of Environmental Management, vol. 232, pp. 354–363, 2019. [Online]. Available: https://doi.org/10.1016/j.jenvman.2018.11.046

G. Graber, V. Calderaro, V. Galdi, and A. Piccolo, “Battery second-life for dedicated and shared energy storage systems

supporting EV charging stations,” Electronics, vol. 9, no. 6, 2020. [Online]. Available: https://doi.org/10.3390/electronics9060939

C. Zhu, J. Xu, K. Liu, and X. Li, “Feasibility analysis of transportation battery second life used in backup power for communication base station,” in 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 2017, pp. 1–4. [Online]. Available: https://doi.org/10.1109/ITEC-AP.2017.8080810

J. W. Shim, H. Kim, and K. Hur, “Incorporating state-of-charge balancing into the control of energy storage systems for

smoothing renewable intermittency,” Energies, vol. 12, no. 7, 2019. [Online]. Available: https://doi.org/10.3390/en12071190

S.-S. Shin, J.-S. Oh, S.-H. Jang, J.-H. Cha, and J.-E. Kim, “Active and reactive power control of ESS in distribution system for improvement of power smoothing control,” Journal of Electrical Engineering and Technology, vol. 12,

no. 3, pp. 1007–1015, 2017. [Online]. Available: https://doi.org/10.5370/JEET.2017.12.3.1007

M. Lei, Z. Yang, Y. Wang, H. Xu, L. Meng, J. C. Vásquez, and J. M. Guerrero, “An MPC-based ESS control method for PV power smoothing applications,” IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2136–2144, 2018. [Online]. Available: https://doi.org/10.1109/TPEL.2017.2694448

J.-C. Wu, H.-L. Jou, W.-C. Wu, and C.-H. Chang, “Solar power generation system with power smoothing function,” IEEE Access, vol. 10, pp. 29 982–29 991, 2022. [Online]. Available: https://doi.org/10.1109/ACCESS.2022.3159801

A. Zulueta, D. A. Ispas-Gil, E. Zulueta, J. García- Ortega, and U. Fernández-Gamiz, “Battery sizing optimization in power smoothing applications,” Energies, vol. 15, no. 3, 2022. [Online]. Available: https://doi.org/10.3390/en15030729

D. Benavides, P. Arévalo, J. A. Aguado, and F. Jurado, “Experimental validation of a novel power smoothing method for on-grid photovoltaic systems using supercapacitors,” International Journal of Electrical Power & Energy Systems, vol. 149, p. 109050, 2023. [Online]. Available: https://doi.org/10.1016/j.ijepes.2023.109050

Y. Zhu, H. Zang, L. Cheng, and S. Gao, “Output power smoothing control for a wind farm based on the allocation of wind turbines,” Applied Sciences, vol. 8, no. 6, 2018. [Online]. Available: https://doi.org/10.3390/app8060980

A. Atif and M. Khalid, “Saviztky–golay filtering for solar power smoothing and ramp rate reduction based on controlled battery energy storage,” IEEE Access, vol. 8, pp. 33 806–33 817, 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2973036

X. Li, D. Hui, and X. Lai, “Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 464–473, 2013. [Online]. Available:

https://doi.org/10.1109/TSTE.2013.2247428