Analysis of regenerative braking efficiency in an electric vehicle through experimental tests

Main Article Content

Abstract

This paper presents a regenerative braking analysis of efficiency in real driving conditions and different road geographies. Factors affecting or benefiting energy recovery were identified, these are: the weight of the vehicle, torque, speed, inclination of road, and braking time; however, the sport and Eco driving modes were not considered because the same driving pace was chosen for the different routes. These results are intended to collaborate with real energy regeneration data and help investigators, academics, and automotive engineering, improving this system's efficiency. In the driving process, the state of charge (SOC), speed, torques, and road geography effect the efficiency of regenerative braking, as driving a vehicle on a road with irregular geography exposes it to aggressive physical factors, which considerably reduces its energy autonomy. The main aspects of recovery and regenerative braking efficiency were determined through quantitative data analysis, resulting in experimental surfaces and curves, which present the performance of current and deceleration during vehicle braking. Thus, it is shown that the energy recovery during braking is 78% considering the low autonomy of the electric vehicle.

Article Details

Section
Mechanical design

References

P. Spichartz and C. Sourkounis, “Influence of the braking system and the type of regenerative braking request on the energy consumption of electric vehicles,” in 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), 2020, pp. 1–7. [Online]. Available: https://doi.org/10.1109/EVER48776.2020.9242939

J. D. Valladolid, D. Patiño, G. Gruosso, C. A. Correa-Flórez, J. Vuelvas, and F. Espinoza, “A novel energy-efficiency optimization approach based on driving patterns styles and experimental tests for electric vehicles,” Electronics, vol. 10, no. 10, 2021. [Online]. Available: https://doi.org/10.3390/electronics10101199

T. A. Skouras, P. K. Gkonis, C. N. Ilias, P. T. Trakadas, E. G. Tsampasis, and T. V. Zahariadis, “Electrical vehicles: Current state of the art, future challenges, and perspectives,” Clean Technologies, vol. 2, no. 1, pp. 1–16, 2020. [Online]. Available: https://doi.org/10.3390/cleantechnol2010001

S. Heydari, P. Fajri, N. Lotfi, and B. Falahati, “Influencing factors in low speed regenerative braking performance of electric vehicles,” in 2018 IEEE Transportation Electrification Conference and Expo (ITEC), 2018, pp. 494–499. [Online]. Available: https://doi.org/10.1109/ITEC.2018.8450260

V. Totev and V. Gueorgiev, “Efficiency of regenerative braking in electric vehicles,” in 2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA), 2020, pp. 1–4. [Online]. Available: https://doi.org/10.1109/SIELA49118.2020.9167153

Y.Wang and Y. Su, “A research for brake strategy based on fuzzy control in pure electric vehicles,” in 2015 4th International Conference on Computer Science and Network Technology (ICCSNT), vol. 01, 2015, pp. 689–693. [Online]. Available: https://doi.org/10.1109/ICCSNT.2015.7490838

M. Gupta, “Evaluation of regenerative braking and its functionality in electric vehicles,” in 2020 International Conference for Emerging Technology (INCET), 2020, pp. 1–6. [Online]. Available: https://doi.org/10.1109/INCET49848.2020.9154047

J. Bian and B. Qiu, “Effect of road gradient on regenerative braking energy in a pure electric vehicle,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 232, no. 13, pp. 1736–1746, 2018. [Online]. Available: https://doi.org/10.1177/0954407017735020

J. Zhang, X. Lu, J. Xue, and B. Li, “Regenerative braking system for series hybrid electric city bus,” World Electric Vehicle Journal, vol. 2, no. 4, pp. 363–369, 2008. [Online]. Available: https://doi.org/10.3390/wevj2040363

T. T. Duong, D. V. Do, and T. T. Nguyen, “Research on braking force distribution in regenerative braking system apply to conventional vehicle,” in 2018 4th International Conference on Green Technology and Sustainable Development (GTSD), 2018, pp. 48–52. [Online]. Available: https://doi.org/10.1109/GTSD.2018.8595456

Y. Zhang, C. Zhao, and Z. Li, “Electric vehicle regenerative braking system simulation based on Kalman filter,” in 2020 Chinese Automation Congress (CAC), 2020, pp. 2936–2941. [Online]. Available: https://doi.org/10.1109/CAC51589.2020.9327759

P. Spichartz and C. Sourkounis, “Influence of the braking system and the type of regenerative braking request on the energy consumption of electric vehicles,” in 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), 2020, pp. 1–7. [Online]. Available: https://doi.org/10.1109/EVER48776.2020.9242939

N. Watrin, B. Blunier, and A. Miraoui, “Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation,” in 2012 IEEE Transportation Electrification Conference and Expo (ITEC), 2012, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ITEC.2012.6243437

Y. Sun, Y. Wang, R. Zhu, R. Geng, J. Zhang, D. Fan, and H. Wang, “Study on the control strategy of regenerative braking for the hybrid electric vehicle under typical braking condition,” IOP Conference Series: Materials Science and Engineering, vol. 452, p. 032092, 2018. [Online]. Available: https://doi.org/10.1088/1757-899x/452/3/032092

EmoLab. (2022) Grupo de Investigación en Ingeniería de Transporte. Universidad Politécnica Salesiana. [Online]. Available: https://bit.ly/3Sju2gP