Control of a Power System based on Flywheel to mitigate the Voltage Sags at the Point of Common Coupling

Main Article Content

Abstract

This article presents the design of a power system based on flywheel to mitigate voltage sags. With this system the power quality is improved at a point in a distribution network, which is subject to the random connection of electric machines. For this purpose, the power distribution system is modeled, the power supply system which is composed of an electric machine with flywheel, the bidirectional energy conversion system and the current, voltage and speed control system. The designed system enables supplying a power of 22.8 kW and capacity of 1.2 Wh, compensating the transients produced by the loads connected to the network.

Article Details

Section
Scientific Paper

References

[1] N. S. Gayathri, N. Senroy, and I. N. Kar, “Smoothing of wind power using flywheel energy storage system,” IET Renewable Power Generation, vol. 11, no. 3, pp. 289–298, 2017. [Online]. Available: https://doi.org/10.1049/iet-rpg.2016.0076
[2] D. O. Akinyele and R. K. Rayudu, “Review of energy storage technologies for sustainable power networks,” Sustainable Energy Technologies and Assessments, vol. 8, pp. 74–91, 2014. [Online]. Available: https://doi.org/10.1016/j.seta.2014.07.004
[3] S. Gayathri Nair and N. Senroy, “Power smoothening using multi terminal dc based dfig connection and flywheel energy storage system,” in 2016 IEEE 6th International Conference on Power Systems (ICPS), 2016, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ICPES.2016.7584134
[4] J. A. Guacaneme, D. Velasco, and C. A. L. Trujillo, “Revisión de las características de sistemas de almacenamiento de energía para aplicaciones en micro redes,” Información tecnológica, vol. 25, pp. 175–188, 00 2014. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642014000200020
[5] D. R. Aitchison, M. Cirrincione, and N. Leijtens, “Design development of a flywheel energy storage system for isolated pacific island communities,” in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2016, pp. 1628–1633. [Online]. Available: https://doi.org/10.1109/AIM.2016.7577003
[6] J. Itoh, T. Masuda, D. Sato, T. Nagano, T. Suzuki, and N. Yamada, “Development of magnetic assist system in flywheel energy storage system for power load-leveling,” in 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016, pp. 198–203. [Online]. Available: https://doi.org/10.1109/ICRERA.2016.7884537
[7] X. Zhang and J. Yang, “A robust flywheel energy storage system discharge strategy for wide speed range operation,” IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 7862–7873, 2017. [Online]. Available: https://doi.org/10.1109/TIE.2017.2694348
[8] F. Franco Hernández and H. Valdés Carrillo, Minería artesanal del oro de aluvión en Mocoa, Putumayo, Amazonia colombiana. Universidad Nacional de Colombia, 2005. [Online]. Available: https://bit.ly/2zTe5uL
[9] G. V. Deshpande and S. S. Sankeshwari, “Speed control of induction motors using hybrid pi plus fuzzy controller,” International Journal of Advances in Engineering & Technology, IJAET, vol. 6, no. 5, pp. 2253–2261, 2013. [Online]. Available: https://bit.ly/3dYCspA
[10] L. G. González Morales, “Mejora de la eficiencia y de las prestaciones dinámicas en procesadores electrónicos de potencia para pequeños aerogeneradores sincrónicos operando en régimen de velocidad variable,” Ph.D. dissertation, 2011. [Online]. Available: https://bit.ly/2Tqfksm
[11] F. A. Bardemaker, “Modulação vetorial aplicada a retificadores trifásicos PWM unidirecionais,” Ph.D. dissertation, 2006. [Online]. Available: https://bit.ly/3e5gsta
[12] A. S. de Morais, F. Lessa Tofoli, and I. Barbi, “Modeling, digital control, and implementation of a three-phase four-wire power converter used as a power redistribution device,” IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1035–1042, 2016. [Online]. Available: https://doi.org/10.1109/TII.2016.2544248
[13] S. M. de Pancorbo, G. Ugalde, J. Poza, and A. Egea, “Comparative study between induction motor and synchronous reluctance motor for electrical railway traction applications,” in 2015 5th International Electric Drives Production Conference (EDPC), 2015, pp. 1–5. [Online]. Available: https://doi.org/10.1109/EDPC.2015.7323219
[14] M. Bhardwaj, Sensored Field Oriented Control of 3-Phase Permanent Magnet Synchronous Motors. Texas Instruments, 2013. [Online]. Available: https://bit.ly/3gahvKc
[15] S. Talebi Rafsanjan, “Advanced high-speed flywheel energy storage systems for pulsed power application.” Ph.D. dissertation, 2008. [Online]. Available: https://bit.ly/3cPPO7j