Prototype of a Device for the Automatic Measurement of Physiological Signals to Assist the Diagnosis and Monitoring of patients with COVID-19

Main Article Content

Karla Llanos
Christian Landi
Fernando Yupa
Paola Vasquez
Ismael Criollo
John Calle-Siguencia
Fernando Urgilés-Ortiz
Ana Cecilia Villa-Parra


This article describes the design, construction and preliminary results of a device to automate the measurement of physiological signals to assist in the diagnosis and monitoring of COVID-19. The device uses a system to controlling linear actuators to turn on/off certified biomedical instruments, in addition to algorithms for image recognition of displays with measurements of temperature, oxygen saturation, pressure and heart rate. The system also includes a mobile application, which receives data in real time and creates a database for medical evaluation. Results obtained with the device have demonstrated to provide a high percentage of efficiency in the data acquisition. After several trials with users, SUS and PSSUQ tests were applied to allow verifying the users’ feedback regarding the satisfaction and usability of the prototype, with high score, showing the good acceptance of the device from the users.
Abstract 81 | PDF (Español (España)) Downloads 33 PDF Downloads 41


[1] WHO. (2020) Archived: WHO Timeline - COVID-19. World Health Organization. [Online]. Available:
[2] A. Trilla, “Un mundo, una salud: la epidemia por el nuevo coronavirus COVID-19,” Medicina Clínica, vol. 154, no. 5, pp. 175–177, 2020. [Online]. Available:
[3] Ministerio de Salud. (2021) Actualización de casos de coronavirus en Ecuador. Instituto Nacional de Investigación en Salud Pública, Ecuador. [Online]. Available:
[4] M. Villegas-Chiroque, “COVID-19 pandemic: fight or flight,” Revista Experiencia en Medicina del Hospital Regional Lambayeque, vol. 6, no. 1, 2020. [Online]. Available:
[5] C. Menni, C. H. Sudre, C. J. Steves, S. Ourselin, and T. D. Spector, “Quantifying additional COVID-19 symptoms will save lives,” The Lancet, vol. 395, no. 10241, pp. e107–e108, Jun 2020. [Online]. Available:
[6] B. Mizrahi, S. Shilo, H. Rossman, N. Kalkstein, K. Marcus, Y. Barer, A. Keshet, N. Shamir-Stein, V. Shalev, A. E. Zohar, G. Chodick, and E. Segal, “Longitudinal symptom dynamics of COVID-19 infection,” Nat Commun, vol. 11, no. 1, p. 6208, Dec. 2020. [Online]. Available:
[7] A. Bella, R. Latif, A. Saddik, and F. Z. Guerrouj, “Monitoring of physiological signs and their impact on the COVID-19 pandemic: Review,” E3S Web of Conferences, vol. 229, p. 01030, 2021. [Online]. Available:
[8] A. Espinosa Brito, “A propósito de la COVID-19: Mide tu presión arterial, contrólala y vive más,” Revista Finlay, vol. 11, no. 3, 2021. [Online]. Available:
[9] D. S. W. Ting, L. Carin, V. Dzau, and T. Y. Wong, “Digital technology and COVID-19,” Nature Medicine, vol. 26, no. 4, pp. 459–461, Apr 2020. [Online]. Available:
[10] R. Rethnakumar, M. G. Md Johar, M. H. Alkawaz, R. A. A. Helmi, and N. M. Tahir, “Smartphone based application for body temperature and heart rate measurements,” in 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC), 2021, pp. 189–194. [Online]. Available:
[11] A. Depari, A. Flammini, S. Rinaldi, and A. Vezzoli, “A portable multi-sensor system for non-invasive measurement of biometrical data,” Procedia Engineering, vol. 47, pp. 1323–1326, 2012. [Online]. Available:
[12] S. Mirjalali, S. Peng, Z. Fang, C.-H. Wang, and S. Wu, “Wearable sensors for remote health monitoring: Potential applications for early diagnosis of COVID-19,” Advanced Materials Technologies, vol. n/a, no. n/a, p. 2100545, 2021. [Online]. Available:
[13] L. G. Meza Contreras, M. Botero, and W. Ardila, “Diseño de procedimientos para la calibración de tensiómetros según la norma técnica NTCISO/IEC 17025,” Revista Colombiana de Física, vol. 43, no. 2, p. 323, 2011. [Online]. Available:
[14] L. P. Motta, P. P. F. d. Silva, B. M. Borguezan, J. L. M. d. Amaral, L. G. Milagres, M. N. Bóia, M. R. Ferraz, R. Mogami, R. A. Nunes, and P. L. d. Melo, “An emergency system for monitoring pulse oximetry, peak expiratory flow, and body temperature of patients with COVID-19 at home: Development and preliminary application,” PLoS One, vol. 16, no. 3, p. e0247635, Mar. 2021. [Online]. Available:
[15] J. Martinho, L. Prates, and J. Costa, “Design and implementation of a wireless multiparameter patient monitoring system,” Procedia Technology, vol. 17, pp. 542–549, 2014. [Online]. Available:
[16] D. M. D’Addona, R. Rongo, R. Teti, and R. Martina, “Bio-compatible cyber-physical system for cloud-based customizable sensor monitoring of pressure conditions,” Procedia CIRP, vol. 67, pp. 150–155, 2018. [Online]. Available:
[17] M. M. Yassin, A. M. Saber, M. N. Saad, A. M. Said, and A. M. Khalifa, “Developing a low-cost, smart, handheld electromyography biofeedback system for telerehabilitation with clinical evaluation,” Medicine in Novel Technology and Devices, vol. 10, p. 100056, 2021. [Online]. Available:
[18] M. Martínez-García, M. Bal-Alvarado, F. Santos Guerra, R. Ares-Rico, R. Suárez-Gil, A. Rodríguez-Álvarez, A. Pérez-López, E. Casariego-Vales, e. N. d. E. de Seguimiento Compartido TELEA-COVID Lugo, and E. T. C.-. (Lugo), “[monitoring of COVID-19 patients by telemedicine with telemonitoring],” Elsevier Public Health Emergency Collection, vol. 220, no. 8, pp. 472–479, Jun. 2020. [Online]. Available:
[19] B. Clipper, “The influence of the COVID-19 pandemic on technology: Adoption in health care,” Nurse Lead, vol. 18, no. 5, pp. 500–503, Jun. 2020. [Online]. Available:
[20] Y. Coelho, L. Lampier, C. Valadão, E. Caldeira, D. Delisle-Rodríguez, A. C. Villa-Parra, C. Cobos-Maldonado, J. Calle-Siguencia, F. Urgilés-Ortiz, and T. Bastos-Filho, “Towards the use of artificial intelligence techniques in biomedical data from an integrated portable medical assistant to infer asymptomatic cases of covid-19,” in Information Technology and Systems, Á. Rocha, C. Ferrás, P. C. López-López, and T. Guarda, Eds. Springer International Publishing, 2021, pp. 24–34. [Online]. Available:
[21] F. Z. Fagroud, H. Toumi, E. H. Ben Lahmar, M. A. Talhaoui, K. Achtaich, and S. E. Filali, “Impact of IoT devices in E-Health: A review on IoT in the context of COVID-19 and its variants,” Procedia Comput Sci, vol. 191, pp. 343–348, Sep. 2021. [Online]. Available:
[22] A. Ravizza, C. De Maria, L. Di Pietro, F. Sternini, A. L. Audenino, and C. Bignardi, “Comprehensive review on current and future regulatory requirements on wearable sensors in preclinical and clinical testing,” Frontiers in Bioengineering and Biotechnology, vol. 7, p. 313, 2019. [Online]. Available:
[23] S. Hoffstaetter, J. Bochi, M. Lee, L. Kistner, R. Mitchell, E. Cecchini, J. Hagen, D. Morawiec, E. Bedada, and U. Akyüz. (2021) Pytesseract 0.3.8. Python Software Foundation. [Online]. Available:
[24] R. de la Vega. (2021) Pytesseract: Reconocimiento óptico de caracteres en Python. PHAROS. [Online]. Available:
[25] M. Almenara Masbernat, “Modelo teóricopráctico para la implementación del diseño centrado en el usuario en el desarrollo, la validación y la aceptación de los productos de apoyo para personas con enfermedades de origen neurológico,” Ph.D. dissertation, 2018. [Online]. Available:
[26] UIUX Trend. (2021) Pssuq calculator. UIUX Trend. [Online]. Available:
[27] I. Guerra Llamas, D. H. Gascueña, C. Ledesmas Torres, and I. García Pérez, “Diferencias en las tomas de tensión arterial manual y automática,” Fundación Renal Íñigo Álvarez de Toledo. Madrid, 2014. [Online]. Available:
[28] V. Santos, M. Trujillo, K. Portilla, and A. Rosales, “Accessible eHealth system for heart rate estimation,” in Advances in Emerging Trends and Technologies, M. Botto-Tobar, J. León-Acurio, A. Díaz Cadena, and P. Montiel Díaz, Eds. Springer International Publishing, 2020, pp. 260–269. [Online]. Available:
[29] P. Eslami, S. R. Niakan Kalhori, and M. Taheriyan, “eHealth solutions to fight against COVID-19: A scoping review of applications,” Medical Journal of the Islamic Republic of Iran, vol. 35, p. 43, Apr. 2021. [Online]. Available: