Control de velocidad de un motor síncrono de imanes permanentes accionado por un inversor trifásico multinivel

Contenido principal del artículo

Rosalino Mayoral Lagunez https://orcid.org/0000-0003-3420-7416
José Antonio Juárez Abad https://orcid.org/0000-0003-0279-9381
Beatriz Angélica Aguilar López https://orcid.org/0000-0002-2769-4992
Jesús Linares Flores https://orcid.org/0000-0002-5723-4786
Jorge Luis Barahona Avalos https://orcid.org/0000-0002-5502-6692

Keywords

PMSM, control por pasividad, inversor multinivel, FPGA

Resumen

Este trabajo presenta el diseño e implementación de un controlador robusto para el seguimiento de velocidad de un motor síncrono de imanes permanentes (MSIP). Se propone un controlador lineal basado en la retroalimentación dinámica de la salida pasiva estática del error exacto. El controlador pasivo propuesto requiere del conocimiento del par de carga, por lo que el mismo es estimado con un observador tradicional de orden reducido. El MSIP es impulsado por medio de un inversor multinivel trifásico de celdas en cascada de cinco niveles. Para la implementación del controlador, estimador y modulador multinivel se emplea un arreglo de compuertas programable en campo (FPGA) de la familia Spartan-6 XC6SLX9. El procesamiento en paralelo que provee este dispositivo permite obtener un tiempo de muestreo de 10 us. Los resultados de simulación y experimentales muestran que el controlador propuesto tiene un excelente desempeño.
Abstract 322 | PDF Downloads 251 PDF (English) Downloads 19 HTML Downloads 13 HTML (English) Downloads 5 EPUB Downloads 0 XML Downloads 0

Citas

[1] T. Wildi, Máquinas eléctricas y sistemas de potencia, 2007. [Online]. Available: https://bit.ly/35aPtZm
[2] L. Blanco Rubio, “Diseño electromagnético de un motor síncrono de imanes permanentes para el accionamiento directo de la hélice de un barco,” 2017. [Online]. Available: https://bit.ly/2PAJZAj
[3] J. Linares-Flores, C. García-Rodríguez, O. D. Ramírez-Cárdenas, C. Escobar-Noriega, and M. A. Contreras-Ordaz, “Control robusto de seguimiento suave de posición angular del motor síncrono de imanes permanentes,” in Memorias del XVI Congreso Latinoamericano de Control Automático, Octubre 14-17, 2014. Cancún, Quintana Roo, México, 2014, pp. 1113–1118. [Online]. Available: http://doi.org/10.13140/2.1.2760.9607
[4] J. Linares-Flores, C. Garcia-Rodriguez, H. Sira-Ramirez, and O. D. Ramirez-Cärdenas, “Robust backstepping tracking controller for low speed pmsm positioning system: Design, analysis, and implementation,” in 2015 IEEE International Conference on Industrial Technology (ICIT), March 2015, pp. 2131–2138. [Online]. Available: https://doi.org/10.1109/ICIT.2015.7125411
[5] IEEE, “Ieee recommended practices and requirements for harmonic control in electrical power systems,” IEEE Std 519-1992, pp. 1–112, April 1993. [Online]. Available: https://doi.org/10.1109/IEEESTD.1993.114370
[6] M. H. Rashid, Electrónica de potencia: circuitos, dispositivos y aplicaciones, 2004. [Online]. Available: https://bit.ly/2t9mZ42
[7] J. A. Juárez-Abad, J. Linares-Flores, E. Guzmán-Ramírez, and H. Sira-Ramírez, “Generalized proportional integral tracking controller for a single-phase multilevel cascade inverter: An fpga implementation,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 256–266, Feb 2014. [Online]. Available: https://doi.org/10.1109/TII.2013.2242085
[8] F. Chauca Llusca, F. Llerena Rengel, and P. Chico Hidalgo, “Diseño y construcción de un inversor multinivel,” Revista Politécnica, vol. 33, no. 1, 2014. [Online]. Available: https://bit.ly/36rAxpI
[9] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Industrial Electronics Magazine, vol. 2, no. 2, pp. 28–39, June 2008. [Online]. Available: https://doi.org/10.1109/MIE.2008.923519
[10] E. Monmasson, L. Idkhajine, and M. W. Naouar, “Fpga-based controllers,” IEEE Industrial Electronics Magazine, vol. 5, no. 1, pp. 14–26, March 2011. [Online]. Available: https://doi.org/10.1109/MIE.2011.940250
[11] D. G. Maxinez and J. Alcalá Jara, VHDL: el arte de programar sistemas digitales, 2002. [Online]. Available: https://bit.ly/2PCE8dL
[12] J. J. Rodríguez-Andina, M. D. Valdés-Peña, and M. J. Moure, “Advanced features and industrial applications of FPGAs–a review,” IEEE Transactions on Industrial Informatics, vol. 11, no. 4, pp. 853–864, Aug 2015. [Online]. Available: https://doi.org/10.1109/TII.2015.2431223
[13] W. Zhu, “Fpga logic devices for precision control: An application to large friction actuators with payloads,” IEEE Control Systems Magazine, vol. 34, no. 3, pp. 54–75, June 2014. [Online]. Available: https://doi.org/10.1109/MCS.2014.2308691
[14] E. Mandado, L. J. Álvarez, and M. D. Valdés, Dispositivos Lógicos Programables, 2002. [Online]. Available: https://bit.ly/38uCiEq
[15] R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, 2017. [16] H. J. Marquez, Nonlinear control systems: analysis and design. Wiley-Interscience Hoboken, 2003, vol. 1. [Online]. Available: https://bit.ly/2YMdMKM
[17] Y. E. Gliklikh, “Necessary and sufficient conditions for global-in-time existence of solutions of ordinary, stochastic, and parabolic differential equations,” Abstract and Applied Analysis, vol. 2006, Special Issue, p. 17, 2006. [Online]. Available: https://doi.org/10.1155/AAA/2006/39786
[18] IEEE, IEEE 754-2019 - IEEE Standard for Floating-Point Arithmetic, 2019. [Online]. Available: https://bit.ly/2E5tnvo
[19] M. Naouar, E. Monmasson, A. A. Naassani, I. Slama-Belkhodja, and N. Patin, “FPGA-based current controllers for AC machine drives–a review,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1907–1925, Aug 2007. [Online]. Available: https://doi.org/10.1109/TIE.2007.898302