Comparación entre redes neuronales artificiales y regresión múltiple para la predicción de la rugosidad superficial en el torneado en seco

##plugins.themes.bootstrap3.article.main##

Yoandrys Morales Tamayo http://orcid.org/0000-0001-7456-1490
Yusimit Karina Zamora Hernández http://orcid.org/0000-0002-0112-1061
Paco Jeovanni Vásquez Carrera http://orcid.org/0000-0003-4734-8584
Mario Paúl Porras Vásconez http://orcid.org/0000-0002-4119-4812
Joao Lázaro Bárzaga Quesada http://orcid.org/0000-0001-9792-7379
Ringo John López Bustamante http://orcid.org/0000-0002-6519-1587

Keywords

acero inoxidable AISI 316L, análisis de varianza y regresión, redes neuronales artificiales, rugosidad superficial, torneado de alta velocidad.

Resumen

Los métodos de regresión múltiple y redes neuronales artificiales son técnicas usadas en muchas aplicaciones de la industria. En este trabajo se utilizaron dos métodos de predicción: regresión múltiple y redes neuronales artificiales (perceptrón multicapa) con el objetivo de predecir la rugosidad superficial en el torneado en seco del acero AISI 316l. En su implementación fueron considerados varios parámetros de corte como la velocidad, el avance y el tiempo de mecanizado. Las ecuaciones obtenidas por ambos métodos fueron comparadas desarrollando un diseño factorial completo para aumentar la fiabilidad de los valores registrados de rugosidad superficial. En el análisis se puede comprobar mediante los valores de coeficientes de determinación que los modelos propuestos son capaces de predecir la rugosidad superficial. Los modelos obtenidos demuestran que la técnica de redes neuronales artificiales tiene mejor precisión que la regresión múltiple para este estudio.
Abstract 673 | PDF Downloads 794 HTML Downloads 341 PREDICCIÓN DE LA RUGOSIDAD SUPERFICIAL EN EL TORNEADO EN SECO USANDO MÉTODOS DE REGRESIÓN MÚLTIPLE Y REDES NEURONALES ARTIFICIALES Downloads 99 Tablas y Figuras Downloads 45 Carta de presentación Downloads 51 PDF (English) Downloads 131

Citas

[1] D. Vasumathy, A. Meena y M. Duraiselvam "Experimental study on evaluating the effect of micro textured tools in turning aisi 316 austenitic stainless steel". Procedia Engineering. vol. 184 pp. 50-57, 2017.
[2] F. Mata, I. Hanafi, A. Khamlichi, A. Jabbouri y M. Bezzazi "Predicción de rugosidad en maquinado de compuestos con base de peek usando metodología de superficie de respuesta". Ingeniería Investigación y Tecnología. vol. 14 pp. 463-474, 2013.
[3] M. Mia y N. R. Dhar "Prediction of surface roughness in hard turning under high pressure coolant using artificial neural network". Measurement. vol. 92 pp. 464-474, 2016.
[4] A. Fernández-Abia, J. Barreiro, L. Lacalle y S. Martínez "Effect of very high cutting speeds on shearing, cutting forces and roughness in dry turning of austenitic stainless steels". The International Journal of Advanced Manufacturing Technology. vol. 57 pp. 61-71, 2011.
[5] Zhou J. M., Bushlya V. y Stahl J. E. "An investigation of surface damage in the high speed turning of inconel 718 with use of whisker reinforced ceramic tools". Journal of Materials Processing Technology. vol. 212 pp. 372-384, 2012.
[6] T. Sata "Surface finish in metal cutting". Ann. CIRP. vol. 12 pp. 190-197, 1963.
[7] G. R. Dickinson "A survey of factors affecting surface finish". Properties and Metrology of Surface. vol. 3K pp. 135-147., 1968.
[8] M. P. Groover 2007. Fundamentos de manufactura moderna. Materiales, procesos y sistemas México DF. México,
[9] I. Korkut, M. Kasap, I. Ciftci y U. Seker "Determination of optimum cutting parameters during machining of aisi 304 austenitic stainless steel". Materials & Design. vol. 25 pp. 303-305, 2004.
[10] Y. Morales Tamayo, Y. Zamora Hernández, Z. R. P. d. C., R. F. Beltran Reyna y J. C. Pino Tarrago "Investigação da influência dos parâmetros de corte na rugosidade superficial usando regressão múltipla". Revista Iberoamericana de Ingeniería Mecánica. vol. 20 pp. 25-33, 2016.
[11] U. Çaydaş y S. Ekici "Support vector machines models for surface roughness prediction in cnc turning of aisi 304 austenitic stainless steel". Journal of Intelligent Manufacturing. vol. 23 pp. 639-650, 2012.
[12] C. Ahilan, S. Kumanan, N. Sivakumaran y J. Edwin Raja Dhasd "Modeling and prediction of machining quality in cnc turning process using intelligent hybrid decision making tools". Applied Soft Computing. vol. 13 pp. 1543–1551, 2013.
[13] D. Philip Selvaraj, P. Chandramohan y M. Mohanraj "Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using taguchi method". Measurement. vol. 49 pp. 205-215, 2014.
[14] H. M. Lin "The study of high speed fine turning of austenitic stainless steel". Journal of Achievements in Materials and Manufacturing Engineering. vol. 27 pp. 191-194, 2008.
[15] A. Fernández Abia, J. Barreiro, L. López de Lacalle y S. Martínez Pellitero "Behavior of austenitic stainless steels at high speed turning using specific force coefficients". The International Journal of Advanced Manufacturing Technology. vol. pp. 1-11, 2012.
[16] C. Maranhão y P. J. Davim "Finite element modelling of machining of aisi 316 steel: Numerical simulation and experimental validation". Simulation Modelling Practice and Theory. vol. 18 pp. 139-156, 2010.
[17] N. Galanis y D. Manolakos "Surface roughness prediction in turning of femoral head". The International Journal of Advanced Manufacturing Technology. vol. 51 pp. 79-86, 2010.
[18] K. S. Sangwan, S. Saxena y G. Kant "Optimization of machining parameters to minimize surface roughness using integrated ann-ga approach". Procedia CIRP. vol. 29 pp. 305-310, 2015.
[19] E. Kilickap, M. Huseyinoglu y A. Yardimeden "Optimization of drilling parameters on surface roughness in drilling of aisi 1045 using response surface methodology and genetic algorithm". The International Journal of Advanced Manufacturing Technology. vol. 52 pp. 79-88, 2011.
[20] R. E. Haber, J. E. Jiménez, A. Jiménez y J. López-Coronado "Modelo matemático para la predicción del esfuerzo de corte en el mecanizado a alta velocidad". Revista de Metalurgia. vol. 40 pp. 247-258, 2004.
[21] I. Asiltürk y M. Çunka "Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method". Expert Systems with Applications. vol. 38 pp. 5826–5832, 2011.
[22] K. V. B. S. Kalyan y S. K. Choudhury "Investigation of tool wear and cutting force in cryogenic machining using design of experiments". Journal of Materials Processing Technology. vol. 203 pp. 95-101, 2008.
[23] D. C. Montgomery 2001. Design and analysis of experiments. New York, John Wiley & Sons, 684
[24] J. J. Montaño. Redes neuronales artificiales aplicadas al análisis de datos. Universitat de Les Illes Balears. Islas Baleares, España. 2002.
[25] V. Gaitonde, S. Karnik, B. Siddeswarappa y B. Achyutha "Integrating box-behnken design with genetic algorithm to determine the optimal parametric combination for minimizing burr size in drilling of aisi 316l stainless steel". The International Journal of Advanced Manufacturing Technology. vol. 37 pp. 230-240, 2008.
[26] Z. Zhimin, Z. Yuanliang, L. Xiaoyan, Z. Huiyuan y S. Baoyuan "Influences of various cutting parameters on the surface roughness during turnings stainless steel". Acoustical Physics. vol. 57 pp. 114-120, 2011.
[27] J. Campos Rubio, T. H. Panzera, A. M. Abrao, P. E. Faria y J. Paulo Davim "Effects of high speed in the drilling of glass whisker-reinforced polyamide composites (pa66 gf30): Statistical analysis of the roughness parameters". Journal of Composite Materials. vol. 45 pp. 1395-1402, 2011.