Characterization of air flow in hills for emplacement of wind farms

Main Article Content

Fran Zhovanni Reinoso Avecillas
Nelson Gustavo Jara Cobos
Pablo Joaquín Gómez del Pino
Cesar Nieto Londoño

Abstract

This article presents the analysis of the behavior of air flow on a hill in the bottom of the atmospheric boundary layer, using a general purpose software Computational Fluid Dynamics (CFD). Through a comparative analysis of the results of the simulations and the experimental data with different topographies standardized hills available; It has been achieved conveniently validate the simulation procedure. Next; is two-dimensionally simulated air flow over an actual ridge; the numerical results with similar scientific studies and in a timely manner with the operating data of wind farm installed on site, achieving characterize with some detail the velocity field and turbulent domain along the kinetic energy is compared; plus get close coincidences as its magnitude with variations in the order of 1 to 2 m/s for the average horizontal velocity.

Article Details

Section
Scientific Paper
Author Biographies

Fran Zhovanni Reinoso Avecillas

Docente Titular Auxiliar de la Universidad Politécnica Salesiana - Carrera de Ingeniría Mecánica.Grupo de Investigación y Desarrollo en Simulación y Toma de Decisiones - GID - STD

Nelson Gustavo Jara Cobos

Docente titular Auxiliar de la Universidad Politécnica Salesiana -  Carrera de Ingeniería MecánicaGrupo de Investigación y Desarrollo en Simulación y Toma de Decisiones.

Pablo Joaquín Gómez del Pino

Doctor Ingeniero Industrial, Ingeniero Industrial, Profesor Titular

Cesar Nieto Londoño

Doctor en Ingeniería, Ingeniero Mecánico, Profesor Titular

References

[1] A. El Kasmi y C. Masson, «An extended model for turbulent flow through horizontal-axis wind turbines», J. Wind Eng. Ind. Aerodyn., vol. 96, n.o 1, pp. 103-122, ene. 2008.

[2] R. Abajo Gálvez, «Análisis del desarrollo de la estela de un aerogenerador en terrenos complejos.», ETS - Ingenieros Industriales UNED; TFM, 2011.

[3] S. Finardi, G. Tinarelli, P. Faggian, y G. Brusasca, «Evaluation of different wind field modeling techniques for wind energy applications over complex topography», J. Wind Eng. Ind. Aerodyn., vol. 74, pp. 283–294, 1998.

[4] Gaurav y O. Sharad V., «A review of computer models for wind flow over mountainous terrain», presentado en International Conference on Environmental Fluid Mechanics (ICEFM), Guwahati, India, 2005, pp. 151-157.

[5] Justus, CG, «Vientos Rendimiento del sistema y del viento». The Franklin Institute Press, 1978.

[6] J. C. Kaimal y J. J. Finnigan, «Atmospheric boundary layer flows: their structure and measurement.» 1994.

[7] G. Teneler, «Wind Flow Analysis on a Complex Terrain: a reliability study of a CFD tool on forested area including effects of forest module», Gotland University, 2011.

[8] «Anderson J.D.Jr. Computational fluid dynamics. The basics with applications .pdf
Web site: https://docs.google.com/file/d/0B22gXRXF8TssaGN5N2c4MHJsVkU/edit?pli=1.

[9] J. Forthofer y B. Butler, «Differences in simulated fire spread over Askervein Hill using two advanced wind models and a traditional uniform wind field», vol. 046.

[10] Aguirre. J. V., «Proyecto eólico Villonaco», 201

[11] Brower, Michael C., «Wind flow model performance», 2012.

[12] S. Finardi, M. G. Morselli, y J. Pierre, «Wind Flow Models over Complex Terrain for Dispersion Calculations». may-1997.

[13] J. Walshe, «CFD Modelling Of Wind Flow Over Complex And Rough Terrain.», Loughborough University, 2003.

[14] J. C. R. Hunt, F. Tampieri, W. S. Weng, y D. J. Carruthers, «Air flow and turbulence over complex terrain: a colloquium and a computational workshop», J. Fluid Mech., vol. 227, pp. 667–688, 1991.

[15] «Capote J. A.?; Alvear D.; Influencia del modelo de turbulencia y del refinamiento de la discretización espacial en la exactitud de las simulaciones computacionales».

[16] «Gómez W.; Llano E. Simulación del viento atmosférico y aplicación experimental».

[17] «GENSUR». [web site]. Disponible en: https://www.celec.gob.ec/index.php?option=com_content&view=article&id=200:gensur&catid=42&Itemid=382. [Accedido: 19-sep-2014].

[18] J. Forthofer y B. Butler, «Differences in simulated fire spread over Askervein Hill using two advanced wind models and a traditional uniform wind field», vol. 046.

[19] A. Bechmann y N. N. Sørensen, «Hybrid RANS/LES method for wind flow over complex terrain», Wind Energy, vol. 13, n.o 1, pp. 36-50, ene. 2010.

[20] K. Røkenes y P.-Å. Krogstad, «Wind tunnel simulation of terrain effects on wind farm siting», Wind Energy, vol. 12, n.o 4, pp. 391-410, may 2009.

[21] A. D. Griffiths y J. H. Middleton, «Simulations of separated flow over two-dimensional hills», J. Wind Eng. Ind. Aerodyn., vol. 98, n.o 3, pp. 155-160, mar. 2010.

[22] A. Maurizi, «Numerical simulation of turbulent flows over 2-D valleys using three versions of the k–? closure model», J. Wind Eng. Ind. Aerodyn., vol. 85, n.o 1, pp. 59-73, mar. 2000.

[23] D. Cabezón, E. Migoya, y A. Crespo, «Comparison of turbulence models for the computational fluid dynamics simulation of wind turbine wakes in the atmospheric boundary layer», Wind Energy, vol. 14, n.o 7, pp. 909-921, oct. 2011.

[24] El Kasmia, Anima y Masson, Christian, «An extemded k-e model for turbulent flow throudh horizontal-axis wind turbines», 2007. [En línea]. Disponible en: http://www.redalyc.org/articulo.oa?id=70711260002. [Accedido: 19-sep-2014].

[25] J. M. Prospathopoulos, E. S. Politis, K. G. Rados, y P. K. Chaviaropoulos, «Evaluation of the effects of turbulence model enhancements on wind turbine wake predictions», Wind Energy, vol. 14, n.o 2, pp. 285-300, mar. 2011.

[26] O’Sullivan, J.P., Pecnik, R., y Iaccarino, G., «Investigating turbulence in wind flow over complex terrain», 2010.