Performance analysis of developing water systems through the coupling hydrologic stochastic models and network flow optimization

Main Article Content

Alex Aviles
Abel Solera
Javier Paredes

Abstract

This study presents a methodology for analyzing the performance of water resources systems through a coupling stochastic models and models of optimization, with the aim of having a support tool for planning and management of supply and demand for water in basins in full development. Methods exposed the strength of statistical hydrological models to capture historical behavior patterns of streamflow time series and synthesize this information by generating likely future streamflow time series, and also the ability to link these series to the simulation models of water resources system management by optimizing conservative flow networks whose objective is to minimize deficits to supply water demands. The application of this methodology was performed in Tomebamba river basin in Ecuador, analyzing the potential water supply system, which could demonstrate the usefulness of the method to handle probabilistic information for the reservoir planning in a watershed and water resources systems management with water deficit and with an approach of risk of dissatisfaction of the demands.

Article Details

Section
Scientific Paper
Author Biographies

Alex Aviles

DEPARTAMENTO DE RECURSOS HIDRICOS Y CIENCIAS AMBIENTALESINVESTIGADOR PRINCIPAL

Abel Solera

Institute of Water and Environmental Engineering

Javier Paredes

Institute of Water and Environmental Engineering

References

[1] Y. P. Li, G. H. Huang, G. Q. Wang, and Y. F. Huang, “FSWM: A hybrid fuzzy-stochastic water-management model for agricultural sustainability under uncertainty,” Agric. Water Manag., vol. 96, no. 12, pp. 1807–1818, Dec. 2009.

[2] Y. Huang, Y. P. Li, X. Chen, a. M. Bao, and M. Zhou, “Simulation-based optimization method for water resources management in Tarim River Basin, China,” Procedia Environ. Sci., vol. 2, pp. 1451–1460, Jan. 2010.

[3] Y. Li and G. Huang, “Inexact multistage stochastic quadratic programming method for planning water resources systems under uncertainty,” Environ. Eng. Sci., vol. 24, no. 10, pp. 1361–1378, 2007.

[4] D. P. Loucks, J. R. Stedinger, and D. A. Haith, Water Resource Systems Planning and Analysis. Prentice-Hall., 1981.

[5] J. Ochoa, “Modelo Estocástico de redes neuronales para la síntesis de caudales aplicados a la gestión probabilística de sequías (Doctoral dissertation, Tesis doctoral dirigida por: D. Joaquín Andreu Álvarez y. D. Rafael García Bartual),” Presentada en la Escuela Técnica Superior de Ingenieros de Caminos Canales y Puertos de la Universidad Politécnica de Valencia, 2002.

[6] J. W. Labadie and M. Asce, “Optimal Operation of Multireservoir Systems?: State-of-the-Art Review,” J. Water Resour. Plan. Manag., vol. 130, no. 2, pp. 93–111, 2004.

[7] V. R. Bonner, “HEC-5: Simulation of flood control and conservation systems (for microcomputers). Model-Simulation,” 1989.

[8] J. Klipsch, “HEC-RESSIM: Capabilities and plans,” in Second Federal Interagency Modeling Conf, Las …, 2002.

[9] S. Stein, C. Miller, S. Stout, and J. Webb, “Big Sandy River basin STELLA reservoir regulation model.,” in Proc., World Water and Environmental Congress. ASCE, Orlando, Fla., 2001.

[10] K. Varvel and K. Lansey, “Simulating surface water flow on the upper Rio Grande using PowerSim 2001,” in SAHRA-NSF Science and Technology Center for Sustainability of Semi-Arid Hydrology and Riparian Areas, 2002.

[11] J. Andreu, J. Capilla, and E. Sanchís, “AQUATOOL, a generalized decision-support system for water-resources planning and operational management,” J. Hydrol., vol. 177, no. 3–4, pp. 269–291, Apr. 1996.

[12] J. Labadie, M. Baldo, and R. Larson, MODSIM: decision support system for river basin management: Documentation and user manual. 2000.

[13] A. Munevar and F. Chung, “Modeling California’s Water Resource Systems with CALSIM (ASCE),” in In Proceedings of 29th Annual Water Resources Planning and Management Conference. ASCE Conf. Proc, 1999, p. 95.

[14] J. Paredes Arquiola, A. Solera Solera, and J. Andreu Álvarez, “Reglas de operación para sistemas multiembalse, combinando métodos heurísticos y redes de flujo,” Tecnol. y Ciencias del Agua, vol. 23, no. 3, pp. 151–164, Jan. 2008.

[15] E. S. Camacho and J. Andreu, “Optimización de la expansión de un sistema de recursos hídricos utilizando las metodologías del Algoritmo Genético y el Recocido Simulado,” Ing. hidráulica en México, vol. 16, no. 2, pp. 17–26, 2001.

[16] S. J. Burges, “Simulation of water resource system. Proceedings of the National Workshop on Reservoir Systems Operations, August 13-17, 1979, University of Colorado, Boulder, Colorado,” 1979, pp. 136–165.

[17] T. Estrela, Modelos matemáticos para la evaluación de recursos hídricos. CEDEX, 1992.

[18] J. D. Salas, Applied Modeling of Hydrologic Time Series. Water Resources Publication, 1980.

[19] J. Box and G. Jenkins, Reinsel. Time Series Analysis, Forecasting and Control, Tercera. NJ: Prentice Hall, Englewood Cliffs, NJ, USA, 1994.

[20] C. M. Hurvich and C.-L. Tsai, “Regression and time series model selection in small samples,” Biometrika, vol. 76, no. 2, pp. 297–307, Jun. 1989.

[21] O. Sveinsson, J. D. Salas, W. Lane, and D. Frevert, Stochastic Analysis, Modeling, and Simulation (SAMS) Version 2007, User’s Manual. 2007.

[22] H. Hurst, “Long-term storage capacity of reservoirs,” Trans. Amer. Soc. Civ. Eng., vol. 116, pp. 770–808, 1951.

[23] D. Cattrysse, Linear programming and network flows M.S. BAZARAA, J.J. JARVIS and H.D. SHERALI Wiley, New York, 1990, xiv+684 pages, £15.95, second edition (first edition, 1977), ISBN 0-471-63681-9, cloth available at £43.20, vol. 50, no. 1. 1991.

[24] J. Andreu, Conceptos y métodos para la planificación hidrológica. BARCELONA, ESPAÑA, 1993.

[25] S. Sánchez, J. Andreu, and A. Solera, Gestión de Recursos Hídricos con Decisiones Basadas en Estimación del Riesgo. VALENCIA, ESPAÑA: UNIVERSIDAD POLITÉCNICA DE VALENCIA, 2001.

[26] J. Andreu, A. Solera, J. Capilla, and J. Ferrer, Modelo SIMGES para simulación de cuencas. Manual de usuario v3. 00. Universidad Politécnica de Valencia, Valencia., 2007.

[27] J. Andreu, A. Solera, J. Capilla, and S. Sánchez, Modelo SIMRISK de simulación múltiple de la Gestión de Recursos Hidricos: Manual de usuario V 2.4. Editorial UPV, Universidad Politécnica de Valencia, Valencia-España, 2004.