Evaluation of pollutant emissions from Diesel Vehicles Fueled with biodiesel under Real-World driving conditions

Main Article Content

Edilberto Antonio Llanes-Cedeño
Andrés Cárdenas-Yánez
Edwin Chamba
Juan Carlos Castelo
Juan Carlos Rocha-Hoyos

Abstract

This study evaluates the impact of B10 and B20 biodiesel blends produced from waste frying oil on pollutant emissions when used in diesel-powered vehicles operating under real-world driving conditions at high altitudes, ranging from 2619 to 2877 meters above sea level, in the Metropolitan District of Quito, Ecuador. Comparative tests were conducted using two diesel vehicles: one equipped with a common rail direct injection (CRDI) system, designated as M2.5C, and another with an injection pump system, referred to as H2.5B. Both vehicles were initially fueled with conventional diesel to establish a baseline. Exhaust emissions were measured under hot-engine conditions using a Portable Emissions Measurement System (PEMS) along a 15.7 km route that included ascending, descending, and urban driving segments. The findings indicate that carbon monoxide (CO) emissions were lowest when pure diesel was used in both engine types. Hydrocarbon (HC) emissions were minimal when B20 biodiesel was employed, regardless of the vehicle. Nitrogen oxide (NOx} emissions showed no significant differences across the fuels tested, and in urban driving conditions, NOx levels remained consistently stable.

Article Details

Section
Scientific Paper

References

WHO. (2019) How air pollution is destroying our health. World Health Organization. [Online]. Available: https://upsalesiana.ec/ing34ar6nr1

C. Henríquez and H. Romero, Urban Climates in Latin America. Springer International Publishing, 2019. [Online]. Available: https://doi.org/10.1007/978-3-319-97013-4

H. Jorquera, L. D. Montoya, and N. Y. Rojas, Urban Air Pollution. Springer International Publishing, 2019, pp. 137–165. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-97013-4_7

R. O. McClellan, T. W. Hesterberg, and J. C. Wall, “Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology,” Regulatory Toxicology and Pharmacology, vol. 63, no. 2, pp. 225–258, Jul. 2012. [Online]. Available: https://doi.org/10.1016/j.yrtph.2012.04.005

L. D. Claxton, “The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. part 3: Diesel and gasoline,” Mutation Research/Reviews in Mutation Research, vol. 763, pp. 30–85, Jan. 2015. [Online]. Available: https://doi.org/10.1016/j.mrrev.2014.09.002

L. E. Tipanluisa, A. P. Remache, C. R. Ayabaca, and S. W. Reina, “Emisiones contaminantes de un motor de gasolina funcionando a dos cotas con combustibles de dos calidades,” Información tecnológica, vol. 28, no. 1, pp. 03–12, 2017. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642017000100002

D. Krajzewicz, M. Behrisch, P. Wagner, R. Luz, and M. Krumnow, Second Generation of Pollutant Emission Models for SUMO. Springer International Publishing, 2015, pp. 203–221. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-15024-6_12

M. Balali-Mood, A. Ghorani-Azam, and B. Riahi- Zanjani, “Effects of air pollution on human health and practical measures for prevention in iran,” Journal of Research in Medical Sciences, vol. 21, no. 1, p. 65, 2016. [Online]. Available: https://doi.org/10.4103/1735-1995.189646

R. J. Wild, W. P. Dubé, K. C. Aikin, S. J. Eilerman, J. A. Neuman, J. Peischl, T. B. Ryerson, and S. S. Brown, “On-road measurements of vehicle no 2 /no x emission ratios in denver, colorado, usa,” Atmospheric Environment, vol. 148, pp. 182–189, Jan. 2017. [Online]. Available: https://doi.org/10.1016/j.atmosenv.2016.10.039

V. Bermúdez, J. R. Serrano, P. Piqueras, J. Gómez, and S. Bender, “Analysis of the role of altitude on diesel engine performance and emissions using an atmosphere simulator,” International Journal of Engine Research, vol. 18, no. 1–2, pp. 105–117, Jan. 2017. [Online]. Available: http://dx.doi.org/10.1177/1468087416679569

ISO. (1975) Iso 2533:1975 – standard atmosphere. International Organization for Standardization. [Online]. Available: https://upsalesiana.ec/ing34ar6nr11

L. Mena Navarrete, M. Román, E. A. Llanes Cedeño, N. Barreno, S. Mena Palacio, and J. C. Rocha-Hoyos, “Estudio de rugosidad por análisis de fourier de las toberas de inyectores en sistemas riel común (crdi),” Ingeniare. Revista chilena de ingeniería, vol. 26, no. 4, pp. 654–662, Dec. 2018. [Online]. Available: http://dx.doi.org/10.4067/S0718-33052018000400654

B. Karolys, E. A. Cedeño, W. Vega, S. Cevallos, and J. Rocha-Hoyos, “Effect of injection parameters and emission characteristics in a common-rail direct injection diesel engine in height conditions: A review,” Journal of Engineering Science and Technology Review, pp. 164–171, 08 2019. [Online]. Available: https://upsalesiana.ec/ing34ar6nr14

G. Triantafyllopoulos, A. Dimaratos, L. Ntziachristos, Y. Bernard, J. Dornoff, and Z. Samaras, “A study on the co2 and nox emissions performance of euro 6 diesel vehicles under various chassis dynamometer and on-road conditions including latest regulatory provisions,” Science of The Total Environment, vol. 666, pp. 337–346, May 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2019.02.144

L. Ntziachristos, G. Papadimitriou, N. Ligterink, and S. Hausberger, “Implications of diesel emissions control failures to emission factors and road transport nox evolution,” Atmospheric Environment, vol. 141, pp. 542–551, Sep. 2016. [Online]. Available: https://doi.org/10.1016/j.atmosenv.2016.07.036

Z. Kan, Z. Hu, D. Lou, P. Tan, Z. Cao, and Z. Yang, “Effects of altitude on combustion and ignition characteristics of speed-up period during cold start in a diesel engine,” Energy, vol. 150, pp. 164–175, May 2018. [Online]. Available: https://doi.org/10.1016/j.energy.2017.12.103

G. Fontaras, B. Ciuffo, N. Zacharof, S. Tsiakmakis, A. Marotta, J. Pavlovic, and K. Anagnostopoulos, “The difference between reported and real-world co 2 emissions: How much improvement can be expected by wltp introduction?” Transportation Research Procedia, vol. 25, pp. 3933–3943, 2017. [Online]. Available: https://doi.org/10.1016/j.trpro.2017.05.333

E. A. Llanes Cedeño, J. C. Rocha-Hoyos, D. B. Peralta Zurita, and J. C. Leguísamo Milla, “Evaluación de emisiones de gases en un vehículo liviano a gasolina en condiciones de altura. caso de estudio quito, ecuador,” Enfoque UTE, vol. 9, no. 2, pp. 149–158, Jun. 2018. [Online]. Available: https://doi.org/10.29019/ENFOQUEUTE.V9N2.201

M. Kousoulidou, G. Fontaras, L. Ntziachristos, P. Bonnel, Z. Samaras, and P. Dilara, “Use of portable emissions measurement system (pems) for the development and validation of passenger car emission factors,” Atmospheric Environment, vol. 64, pp. 329–338, Jan. 2013. [Online]. Available: https://dx.doi.org/10.1016/j.atmosenv.2012.09.062

W. Litwin, W. Leśniewski, D. Piątek, and K. Niklas, “Experimental research on the energy efficiency of a parallel hybrid drive for an inland ship,” Energies, vol. 12, no. 9, p. 1675, May 2019. [Online]. Available: https://doi.org/10.3390/en12091675

A. Ashraful, H. Masjuki, M. Kalam, I. Rizwanul Fattah, S. Imtenan, S. Shahir, and H. Mobarak, “Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review,” Energy Conversion and Management, vol. 80, pp. 202–228, Apr. 2014. [Online]. Available: https://doi.org/10.1016/j.enconman.2014.01.037

F. S. Mirhashemi and H. Sadrnia, “Nox emissions of compression ignition engines fueled with various biodiesel blends: A review,” Journal of the Energy Institute, vol. 93, no. 1, pp. 129–151, Feb. 2020. [Online]. Available: https://doi.org/10.1016/j.joei.2019.04.003

S. Dharma, H. C. Ong, H. Masjuki, A. Sebayang, and A. Silitonga, “An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines,” Energy Conversion and Management, vol. 128, pp. 66–81, Nov. 2016. [Online]. Available: https://doi.org/10.1016/j.enconman.2016.08.072

H. How, H. Masjuki, M. Kalam, and Y. Teoh, “Influence of injection timing and split injection strategies on performance, emissions, and combustion characteristics of diesel engine fueled with biodiesel blended fuels,” Fuel, vol. 213, pp. 106–114, Feb. 2018. [Online]. Available: https://doi.org/10.1016/j.fuel.2017.10.102

A. Gharehghani, M. Mirsalim, and R. Hosseini, “Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission,” Renewable Energy, vol. 101, pp. 930–936, Feb. 2017. [Online]. Available: https://doi.org/10.1016/j.renene.2016.09.045

J. C. Rocha-Hoyos, E. A. Llanes-Cedeño, S. F. Celi-Ortega, and D. C. Peralta-Zurita, “Efecto de la adición de biodiésel en el rendimiento y la opacidad de un motor diésel,” Información tecnológica, vol. 30, no. 3, pp. 137–146, Jun. 2019. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642019000300137

M. Kousoulidou, G. Fontaras, L. Ntziachristos, and Z. Samaras, “Biodiesel blend effects on common-rail diesel combustion and emissions,” Fuel, vol. 89, no. 11, pp. 3442–3449, Nov. 2010. [Online]. Available: https://doi.org/10.1016/j.fuel.2010.06.034

K. J. Godri Pollitt, D. Chhan, K. Rais, K. Pan, and J. S. Wallace, “Biodiesel fuels: A greener diesel? a review from a health perspective,” Science of The Total Environment, vol. 688, pp. 1036–1055, Oct. 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2019.06.002

B. Tesfa, F. Gu, R. Mishra, and A. Ball, “Emission characteristics of a ci engine running with a range of biodiesel feedstocks,” Energies, vol. 7, no. 1, pp. 334–350, Jan. 2014. [Online]. Available: https://doi.org/10.3390/en7010334

J. Medrano-Barboza, K. Herrera-Rengifo, A. Aguirre-Bravo, J. R. Ramírez-Iglesias, R. Rodríguez, and V. Morales, “Pig slaughterhouse wastewater: Medium culture for microalgae biomass generation as raw material in biofuel industries,” Water, vol. 14, no. 19, p. 3016, Sep. 2022. [Online]. Available: https://doi.org/10.3390/w14193016

A. Broch, U. Jena, S. Hoekman, and J. Langford, “Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae,” Energies, vol. 7, no. 1, pp. 62–79, Dec. 2013. [Online]. Available: https://doi.org/10.3390/en7010062

A. Demirbas, “Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification,” Energy Conversion and Management, vol. 50, no. 4, pp. 923–927, Apr. 2009. [Online]. Available: https://doi.org/10.1016/j.enconman.2008.12.023

G. Knothe, J. Krahl, and J. Van Gerpen, The Biodiesel Handbook, 2nd ed. Urbana, IL, USA: AOCS Press/Academic Press, 2010. [Online]. Available: https://upsalesiana.ec/ing34ar6nr33

A. K. Bhonsle, A. Kumar, A. Ray, J. Singh, N. Rawat, and N. Atray, “Biodiesel production from used cooking oil at room temperature using novel solvent – a techno-economic perspective, sensitivity analysis and societal implications,” Energy Conversion and Management, vol. 324, p. 119282, Jan. 2025. [Online]. Available: https://doi.org/10.1016/j.enconman.2024.119282

C. F. Morales-Bayetero, E. A. Llanes-Cedeño, C. Mafla-Yépez, and A. Rodríguez-Rodríguez, “Assessment of the mechanical and environmental behavior of diesel engines operating with biodiesel mixtures,” Revista Facultad de Ingeniería Universidad de Antioquia, Feb. 2023.

F. E. Quinchimbla Pisuña and J. M. Solís Santamaría, Development of city, road and combined driving cycles to evaluate the actual fuel performance of an Otto cyclepowered vehicle in the Metropolitan District of Quito. 2017. Quito, Ecuador: Escuela Politécnica Nacional, 2017. [Online]. Available: https://upsalesiana.ec/ing34ar6nr37

J. I. Huertas, M. Giraldo, L. F. Quirama, and J. Díaz, “Driving cycles based on fuel consumption,” Energies, vol. 11, no. 11, p. 3064, Nov. 2018. [Online]. Available: https://doi.org/10.3390/en11113064

J. C. Leguísamo, E. A. Llanes-Cedeño, S. F. Celi-Ortega, and J. C. Rocha-Hoyos, “Evaluación de la conducción eficiente en un motor de encendido provocado, a 2810 msnm,” Información tecnológica, vol. 31, no. 1, pp. 227–236, Feb. 2020. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642020000100227

J. R. Serrano, P. Piqueras, A. Abbad, R. Tabet, S. Bender, and J. Gómez, “Impact on reduction of pollutant emissions from passenger cars when replacing euro 4 with euro 6d diesel engines considering the altitude influence,” Energies, vol. 12, no. 7, p. 1278, Apr. 2019. [Online]. Available: https://doi.org/10.3390/en12071278

V. Kolanjiappan, “Reduction of amine and biological antioxidants on nox emissions powered by mango seed biodiesel,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 84, pp. 46–54, Sep. 2017. [Online]. Available: http://doi.org/10.17533/udea.redin.n84a06

Y. Guardia-Puebla, J. Márquez-Delgado, V. Sánchez-Girón, E. A. Llanes-Cedeño, J. C. Rocha-Hoyos, and D. B. Peralta-Zurita, “Enhancements to the subject statistical design of experiments for students of the mechanical engineering career,” Revista ESPACIOS, vol. 39, no. 30, p. 10, 2018, [En línea]. [Online]. Available: https://upsalesiana.ec/ing34ar6nr42

G. Belgiorno, G. Di Blasio, S. Shamun, C. Beatrice, P. Tunestål, and M. Tunér, “Performance and emissions of diesel-gasoline-ethanol blends in a light duty compression ignition engine,” Fuel, vol. 217, pp. 78–90, Apr. 2018. [Online]. Available: https://doi.org/10.1016/j.fuel.2017.12.090

H.-H. Riojas-González, L.-J. Bortoni-Anzures, J.-J. Martínez-Torres, and H. A. Ruiz, “Avances y estrategias para mejorar el desempeño del biodiésel en motor diésel,” Ingenius, no. 30, pp. 90–105, Jul. 2023. [Online]. Available: https://doi.org/10.17163/ings.n30.2023.08