IoT and MQTT-based cardiovascular parameter monitoring system for medical alerts

Main Article Content

Marcia Bayas Sampedro
Angela Parra Fernandez
Ronald Rovira Jurado
Manuel Montaño Blacio
Oscar Gómez Morales
Junior Figueroa Olmedo

Abstract

This paper presents the development of a computing platform for the real-time monitoring of cardiovascular parameters derived from bioelectrical signals. A comprehensive analysis of primary users was conducted, leading to the identification of both technical and functional requirements. The interface design was guided by Sommerville’s methodology. The system architecture is based on a microservices model, incorporating a relational database and enabling integration with data transmitted from Internet of Things (IoT) devices. The platform was evaluated through incremental stress testing, starting with zero users and increasing in steps of 100 up to 5,000. A total of 22,132 requests were processed at a peak rate of 440.4 requests per second, with an average response time of 930 ms and 95% of responses occurring within 2,300 ms. The system demonstrated error-free performance with up to 1,700 concurrent users. At 5,000 users and 26,393 total requests, a minimal error rate of 0.16% was recorded, confirming the platform’s stability under high workloads. These findings validate the feasibility of the proposed solution for remote biomedical monitoring, offering an efficient, scalable, and robust tool for real-time health supervision.

Article Details

Section
Scientific Paper

References

C. C. Y. Poon, M. D. Wang, P. Bonato, and D. A. Fenstermacher, “Editorial: Special issue on health informatics and personalized medicine,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 1, pp. 143–146, Jan. 2013. [Online]. Available: https://doi.org/10.1109/TBME.2012.2233593

J. Yang, “Editorial: Flexible biosensors and intelligent medical devices in health and disease,” Frontiers in Bioengineering and Biotechnology, vol. 10, Jun. 2022. [Online]. Available: https://doi.org/10.3389/fbioe.2022.849617

WHO. (2019) Who releases first guideline on digital health interventions. World Health Organization. [Online]. Available: https://upsalesiana.ec/ing34ar6r3

M. Weenk, S. J. Bredie, M. Koeneman, G. Hesselink, H. van Goor, and T. H. van de Belt, “Continuous monitoring of vital signs in the general ward using wearable devices: Randomized controlled trial,” Journal of Medical Internet Research, vol. 22, no. 6, p. e15471, Jun. 2020. [Online]. Available: https://doi.org/10.2196/15471

F. García-Lizana and A. Sarría-Santamera, “New technologies for chronic disease management and control: a systematic review,” Journal of Telemedicine and Telecare, vol. 13, no. 2, pp. 62–68, Mar. 2007. [Online]. Available: https://doi.org/10.1258/135763307780096140

J. Vázquez, A. Secchi, H. Moris, N. Reyne, F. Rivera, F. Astorga, J. Moreno, and P. Amorin, “Parámetros cardiovasculares y su variación posterior a una atención de urgencia odontológica,” International journal of odontostomatology, vol. 15, no. 4, pp. 1019–1025, Dec. 2021. [Online]. Available: http://dx.doi.org/10.4067/S0718-381X2021000401019

J. J. Pastoriza Beltrán, Desarrollo de un módulo para la teledetección automática del estado de las funciones cardiovasculares. Universidad Estatal Península de Santa Elena, 2017. [Online]. Available: https://upsalesiana.ec/ing34ar6r7

B. A. Mubdir and H. M. A. Bayram, “Adopting mqtt for a multi protocols iomt system,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 1, p. 834, Feb. 2022. [Online]. Available: http://doi.org/10.11591/ijece.v12i1.pp834-844

I. Al Khatib, A. Shamayleh, and M. Ndiaye, “Healthcare and the internet of medical things: Applications, trends, key challenges, and proposed resolutions,” Informatics, vol. 11, no. 3, p. 47, Jul. 2024. [Online]. Available: https://doi.org/10.3390/informatics11030047

R. Uddin and I. Koo, “Real-time remote patient monitoring: A review of biosensors integrated with multi-hop iot systems via cloud connectivity,” Applied Sciences, vol. 14, no. 5, p. 1876, Feb. 2024. [Online]. Available: https://doi.org/10.3390/app14051876

M. E. Alomoto Tomalá, Diseño e implementación de un sistema de monitoreo domiciliario para la gestión integral de la salud cardiovascular. Unviersidad Estatal Península de Santa Elena, 2024. [Online]. Available: https://upsalesiana.ec/ing34ar6r11

A. S. Villón Quimi, Diseño e implementación de un dispositivo IoT para la toma de variables bioeléctricas. Universidad Estatal Península de Santa Elena, 2025. [Online]. Available: https://upsalesiana.ec/ing34ar6r12

ONU. (2023) Más del 75más del 65Available: https://upsalesiana.ec/ing34ar6r13

B. G. Arndt, J. W. Beasley, M. D. Watkinson, J. L. Temte, W.-J. Tuan, C. A. Sinsky, and V. J. Gilchrist, “Tethered to the ehr: Primary care physician workload assessment using ehr event log data and time-motion observations,” The Annals of Family Medicine, vol. 15, no. 5, pp. 419–426, Sep. 2017. [Online]. Available: https://doi.org/10.1370/afm.2121

S. Munday, J. Pinchin, and J. Blakey, “Time spent using computers and impact on clinical work among doctors,” Future Healthcare Journal, vol. 4, p. s12, Jun. 2017. [Online]. Available: https://doi.org/10.7861/futurehosp.4-2-s12

M. Saqib and A. H. Moon, “A novel lightweight multi-factor authentication scheme for mqtt-based iot applications,” Microprocessors and Microsystems, vol. 110, p. 105088, Oct. 2024. [Online]. Available: https://doi.org/10.1016/j.micpro.2024.105088

M. Domingues, J. N. Faria, and D. Portugal, “Dimensioning payload size for fast retransmission of mqtt packets in the wake of network disconnections,” EURASIP Journal on Wireless Communications and Networking, vol. 2024, no. 1, Jan. 2024. [Online]. Available: https://doi.org/10.1186/s13638-023-02327-3

I. Fette and A. Melnikov, The WebSocket Protocol. RFC 6455, Dec. 2011. [Online]. Available: https://doi.org/10.17487/RFC6455

G. M. B. Oliveira, D. C. M. Costa, R. J. B. V. M. Cavalcanti, J. P. P. Oliveira, D. R. C. Silva, M. B. Nogueira, and M. C. Rodrigues, “Comparison between mqtt and websocket protocols for iot applications using esp8266,” in 2018 Workshop on Metrology for Industry 4.0 and IoT. IEEE, Apr. 2018. [Online]. Available: https://doi.org/10.1109/METROI4.2018.8428348

S. Al-Fedaghi, Ingienería de software I. UNEMI ONLINE, 2019. [Online]. Available: https://upsalesiana.ec/ing34ar6r20

E. M. Jamieson, L. A. Whyte, and J. M. McCall, Procedimientos de enfermería clínica. ElSevier Churchill Livingstone, 2007. [Online]. Available: https://upsalesiana.ec/ing34ar6r21

R. Gómez Arribas and B. Blasco Colmenarejo, Técnicas básicas de enfermería. EDITEX, 2021. [Online]. Available: https://upsalesiana.ec/ing34ar6r22

A. Pittaras, P. Kokkinos, C. Faselis, C. Grassos, M. Doumas, E. Kallistratos, A. Manolis, and I. B. Samuel, “Resting heart rate and mortality risk in hypertensive patients with no atrial fibrillation,” Journal of Hypertension, vol. 42, no. Suppl 1, p. e50, May 2024. [Online]. Available: https://doi.org/10.1097/01.hjh.0001019736.22833.da

D. López and E. Maya, “Arquitectura de software basada en microservicios para desarrollo de aplicaciones web,” in Séptima Conferencia de Directores de Tecnología de Información, TICAL 2017 Gestión de las TICs para la Investigación y la Colaboración, 2017. [Online]. Available: https://upsalesiana.ec/ing34ar6r24

F. L. Osorio Rivera, Base de datos relacionales Textos Académicos. ITM, 2008. [Online]. Available: https://upsalesiana.ec/ing34ar6r25

I. Sommerville, Software Engineering. Pearson Education, 2004. [Online]. Available: https://upsalesiana.ec/ing34ar6r26

S. Martinez Escuredo, Metodología de Implantación del ERP Microsot Dynamics NAV. Lulu, 2018. [Online]. Available: https://upsalesiana.ec/ing34ar6r27

S. Khan, Z. Jiangbin, and A. Wahab, “Design and development of android performance testing tool,” in 2020 IEEE Conference on Big Data and Analytics (ICBDA). IEEE, Nov. 2020, pp. 57–60. [Online]. Available: https://doi.org/10.1109/ICBDA50157.2020.9289714

S. Fresneda González, Gestión del consumo energético en el desarrollo de aplicaciones para dispositivos móviles. Universitat Politècnica de València, 2017. [Online]. Available: https://upsalesiana.ec/ing34ar6r29

S. Rahman, Development of an IoT backend service with Azure. Centria University of Applied Sciences, 2025. [Online]. Available: https://upsalesiana.ec/ing34ar6r30

I. D. Torres-Pardo, J. A. Guzmán-Luna, C. M. Barros-Ligan, and J. P. Gutiérrez-López, “Medición de parámetros de signos vitales para emisión de alertas móviles,” Revista Politécnica, vol. 19, no. 37, pp. 43–56, Mar. 2023. [Online]. Available: https://doi.org/10.33571/rpolitec.v19n37a4

M. R. Olivas-Martinez and R. Ruiz-Márquez, “Monitor biomédico portátil con comunicación vía bluetooth a dispositivos móviles con sistema operativo windows,” Memorias Del Congreso Nacional De Ingeniería Biomédica, vol. 2, no. 1, pp. 323–327, 2017. [Online]. Available: https://upsalesiana.ec/ing34ar6r33

R. E. Cañon Clavijo, Diseño e implementación de un sistema de monitoreo remoto de ritmo cardiaco y generación de alertas preventivas para la supervisión de pacientes en riesgo potencial. Universidad Distrital Francisco José de Caldas, 2021. [Online]. Available: https://upsalesiana.ec/ing34ar6r34

C. Mundt, K. Montgomery, U. Udoh, V. Barker, G. Thonier, A. Tellier, R. Ricks, R. Darling, Y. Cagle, N. Cabrol, S. Ruoss, J. Swain, J. Hines, and G. Kovacs, “A multiparameter wearable physiologic monitoring system for space and terrestrial applications,” IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 3, pp. 382–391, Sep. 2005. [Online]. Available: https://doi.org/10.1109/TITB.2005.854509

M. Moreno Caballero, Diseño y programación de un sistema de monitorización de parámetros biomédicos. PFC/TFG-Escuela Técnica Superior de Ingeniería Industrial, 2021. [Online]. Available: https://upsalesiana.ec/ing34ar6r36

V. Becerra Tapia, V. Téllez Victoria, J. M. Ramos Medina, G. R. Peñaloza Mendoza, and M. S. Castro Zenil, “Sistema de transferencia de datos biomédicos con protocolos de comunicación de bajo consumo,” Revista de Ciencias Tecnológicas, vol. 6, no. 4, p. e284, Nov. 2023. [Online]. Available: https://doi.org/10.37636/recit.v6n4e284

Z. Rebolledo Nandi, Monitor de signos vitales portátil. Universidad Autónoma de Guerrero, 2016. [Online]. Available: https://upsalesiana.ec/ing34ar6r32

E. I. Tintín Durán, Diseño y elaboración de un prototipo de monitor de signos vitales aplicando métodos no invasivos con comunicación de datos a dispositivos móviles. Universidad Politécnica Salesiana, 2015. [Online]. Available: https://upsalesiana.ec/ing34ar6r39

D. Echeverria, “Tiempo de respuestas y experiencia de usuario estudio experimental,” Revista Latinoamericana de Ingenieria de Software, vol. 4, no. 5, p. 231, Dec. 2016. [Online]. Available: https://doi.org/10.18294/relais.2016.231-234

P. Sala del Real, Análisis de consumo energético para aplicaciones de visión artificial en Android. UAM. Departamento de Ingeniería Informática, 2017. [Online]. Available: https://upsalesiana.ec/ing34ar6r41

A. Meneses-Viveros, E. Hernández-Rubio, S. Mendoza, J. Rodríguez, and A. B. Márquez Quintos, “Energy saving strategies in the design of mobile device applications,” Sustainable Computing: Informatics and Systems, vol. 19, pp. 86–95, Sep. 2018. [Online]. Available: https://doi.org/10.1016/j.suscom.2018.07.011