Cálculo de la carga fluvial de plaguicidas en el río Pisque (Ecuador) entre junio de 2018 y mayo de 2019

Contenido principal del artículo

Renato Sánchez Proaño
Carlos Cerón Pánchig
Karla Landeta Jibaja

Resumen

La cuenca del río Pisque en el Ecuador tiene alta presencia de industria florícola, desarrollándose aquí un estudio cuyo objetivo es la estimación de la magnitud de las pérdidas de plaguicidas que ingresan al agua fluvial por fuentes como escorrentía superficial, contacto con el suelo, permeado de una escorrentía previa o por infiltración, y que pueden ser medidas en el cauce final del río Pisque antes de su desembocadura. Para conocer los pesticidas utilizados se han realizado encuestas a los productores florícolas. Las mediciones se realizaron en los ríos Granobles y Guachalá, afluentes del río Pisque, y en dos puntos separados en el mismo río Pisque, uno inmediatamente después de la conjunción entre los dos afluentes y un punto antes de su desembocadura al siguiente río. Los aforos de caudal fueron mensuales desde junio 2018 hasta mayo 2019; cómo método de muestreo se usaron dispositivos pasivos SPMD y POCIS durante los tres meses secos, de junio a agosto de 2018. Para obtener las tasas de retención de los dispositivos pasivos se realizó una calibración con los plaguicidas en laboratorio mediante un canal hidrodinámico. De las encuestas se identificaron 24 ingredientes activos principales, en su mayoría compuestos con toxicidades Tipo III y Tipo IV. Según los resultados del modelo, la carga fluvial de pesticidas en aguas superficiales fue de 2982,24 Kg entre los meses de junio de 2018 a mayo de 2019, existiendo degradación ambiental de varios compuestos a lo largo del tramo del río.

Detalles del artículo

Sección
Artículo Científico

Referencias

Aguilar, C. (1998). «Comparison of automated online solid-phase extraction followed by liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization and particle beam mass spectrometry for the determination of a priority group of pesticides in environ». En: Journal of Chromatography A 794, 1-2. Online: https://bit.ly/3LD6Hq5.

Aisha, A. y col. (2017). «Monitoring of 45 pesticides in Lebanese surface water using polar organic chemical integrative sampler (POCIS)». En: Ocean Science Journal 52, 455-466. Online: https://bit.ly/3JweeVg.

Alvarez, D. y col. (2004). «Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments». En: Environmental Toxicology and Chemistry: An International Journal 23.7, 1640-1648. Online: https://bit.ly/3FyOJBd.

Alvarez, D. y col. (2007). «Passive sampling techniques in environmental monitoring». En: vol. 48. Comprehensive Analytical Chemistry. Cap. Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS), págs. 171-197.

Alvarez, D. y col. (2014). «Spatial and temporal trends in occurrence of emerging and legacy contaminants in the Lower Columbia River 2008-2010». En: Science of the total environment 484, 322-330. Online: https://bit.ly/3JqFjZQ.

Arias, M. y col. (2008). «The mobility and degradation of pesticides in soils and the pollution of groundwater resources». En: Agriculture, ecosystems y environment 123.4, 247-260. Online: https://bit.ly/40mdh8J.

Badr, A. (2020). «Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential

treatments». En: Environmental Science and Pollution Research 27.21, 26036-26057. Online: https://bit.ly/3LDjEAd.

Bravo, M. y S. Flores (2006). «Incidencia de la producción de rosas en el sector de Cayambe período 2000–2005». Tesis de maestría. Guayaquil.

Breilh, J. y col. (2009). Consolidación del estudio sobre la relación entre impactos ambientales de la floricultura, patrones de exposición y consecuencias en comunidades de la cuenca del Granobles (Sierra Norte, Ecuador): informe técnico final. Inf. téc. Universidad Andina Simón Bolivar.

Cachipuendo, C. (2018). «Modelo dinâmico para a gestão e manejo sustentável de sistemas de irrigação comunitários, no marco do Bom Viver: estudo do caso na bacia do Rio Pisque». Tesis doct. Universidade de São Paulo.

Cairns, T. y J. Sherma (1992). Emerging strategies for pesticide analysis. CRC press.

Calamari, D. y U. Barg (1993). «Prevention ofWater Pollution by Agriculture and Related Activities». En: Comprehensive Analytical Chemistry. Cap. Hazard assessment of agricultural chemicals by simple simulation models, págs. 207-222.

Corrales, J. (2016). «Análisis del sector florícola ecuatoriano periodo 2005-2015 caso Cayambe». Tesis de maestría. Pontificia Universidad Católica del Ecuador.

Fedorova, G. y col. (2014). «A passive sampling method for detecting analgesics, psycholeptics, antidepressants and illicit drugs in aquatic environments in the Czech Republic». En: Science of the total environment 487, 681-687. Online: https://bit.ly/3JZu384.

Ferrer, I. y E. Thurman (2007). «Multi-residue method for the analysis of 101 pesticides and their degradates in food and water samples by liquid chromatography/time-of-flight mass spectrometry». En: Journal of Chromatography A 1175.1, 24-37. Online: https://bit.ly/3LIifIF.

GAD Municipal de Pedro Moncayo (2018). Plan de Desarrollo y Ordenamiento Territorial PDOT Actualización 2018 - 2025. Inf. téc. GAD Municipal de Pedro Moncayo.

GADIP Cayambe (2020). Plan de desarrollo y ordenamiento territorial del cantó Cayambe 2020-2030. Inf. téc. GAD Municipal de Pedro Moncayo.

Górecki, T. y J. Namie´snik (2002). «Passive sampling». En: TrAC Trends in Analytical Chemistry 21.4, 276-291. Online: https://bit.ly/3nf6r6w.

Hernández, F. y col. (2001). «Rapid direct determination of pesticides and metabolites in environmental water samples at sub-ug/l level by on-line solidphase extraction-liquid chromatography-electrospray tandem mass spectrometry». En: Journal of Chromatography A 939.1-2, 1-11. Online: https://bit.ly/3JBjzdU.

Huckins, J. y col. (1999). «Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water». En: Environmental science and technology 33.21, 3918-3923. Online: https://bit.ly/3FIHXca.

Kiso, Y. y col. (1996). «Pesticide analysis by highperformance liquid chromatography using the direct injection method». En: Journal of chromatography A 733.1-2, 259-265. Online: https://bit.ly/3lwCazI.

Kot,A., B. Zabiegala y J. Namie´snik (2000). «Passive sampling for long-term monitoring of organic pollutants in water». En: Trac Trends in Analytical Chemistry 19.7, 446-459. Online: https://bit.ly/3JEJd18.

Kouzayha, A. y col. (2013). «Occurrence of pesticide residues in Lebanon’s water resources». En: Bulletin of environmental contamination and toxicology 91, 503-509. Online: https://bit.ly/3LIG0R6.

Lamessa, M. y col. (2021). «Biological and chemical monitoring of the ecological risks of pesticides in Lake Ziway, Ethiopia». En: Chemosphere 266, 129214. Online: https://bit.ly/3JE15Jx.

López-Roldán, P., M. López de Alda y D. Barceló (2004). «Simultaneous determination of selected endocrine disrupters (pesticides, phenols and phthalates) in water by in-field solid-phase extraction (SPE) using the prototype PROFEXS followed by on-line SPE (PROSPEKT) and analysis by liquid chromatographyatmospheric pressure chemical ionisation-mass spectrometry». En: Analytical and bioanalytical chemistry 378, 599-609. Online: https://bit.ly/40JYC7F.

Luellen, D. y D. Shea (2002). «Calibration and field verification of semipermeable membrane devices for measuring polycyclic aromatic hydrocarbons in water». En: Environmental science and technology 36.8, 1791-1797. Online: https://bit.ly/3naONkr.

Margni, M. y col. (2002). «Life cycle impact assessment of pesticides on human health and ecosystems». En: Agriculture, ecosystems and environment 93.1-3, 379-392. Online: https://bit.ly/3LIN6VK.

Miège, C. y col. (2012). «An in situ intercomparison exercise on passive samplers for monitoring metals, polycyclic aromatic hydrocarbons and pesticides in surface waters». En: TrAC Trends in Analytical Chemistry 36, 128-143. Online: https://bit.ly/3TBNIhB.

Morin, N. y col. (2012). «Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments». En: TrAC Trends in Analytical Chemistry 36, 144-175. Online: https://bit.ly/3FHx6zk.

Murdock, C. y col. (2001). «DGT as an in situ tool for measuring radiocesium in natural waters». En: Environmental science and technology 35.22, págs. 4530-4535.

Narváez, J., C. López y F. Molina (2013). «Passive sampling in the study of dynamic and environmental impact of pesticides in water». En: Revista Facultad de Ingeniería Universidad de Antioquia 68, 147-159. Online: https://n9.cl/59jyk.

Rodrigues, A. y col. (2007). «Determination of several pesticides in water by solid-phase extraction, liquid chromatography and electrospray tandem mass spectrometry». En: Journal of Chromatography A 1150.1-2, 267-278. Online: https://bit.ly/42B1QMb.

Securities and Exchange Commission (2017). «Annual report pursuant to section 13 or 15(d) of 1934».

Swanson, R., B. Brownawell y C. O’Connell (2009). «The Forge River, Problem Identification».

Valarezo, O. y X. Muñoz (2011). Insecticidas de uso agrícola en el Euador. Inf. téc. GAD Municipal de Pedro Moncayo.

Vrana, B. y col. (2005). «Performance optimisation of a passive sampler for monitoring hydrophobic organic pollutants in water». En: Journal of Environmental Monitoring 7.6, 612-620. Online: https://rsc.li/3JJt0rU.

Yabuki, Y. y col. (2016). «Temperature dependence on the pesticide sampling rate of polar organic chemical integrative samplers (POCIS)». En: Bioscience, biotechnology, and biochemistry 80.10, 2069-2075. Online: https://bit.ly/3nc78Oa.