Comparación de los efectos ejercidos por los biofertilizantes, los fertilizantes NPK y los métodos de cultivo sobre la respiración del suelo en el suelo de Chernozem

Contenido principal del artículo

Bence Mátyás
Daniel A. Lowy
Ankit Singla
Jesus R. Melendez
Sándor Zsolt

Resumen

La respiración del suelo es un indicador importante de la actividad microbiana; los procesos de respiración y descomposición del suelo a nivel mundial liberan anualmente a la atmósfera un total de 220 mil millones de toneladas de dióxido de carbono. Por lo tanto, los estudios sobre los aspectos del ciclo del carbono del suelo para optimizar las emisiones de dióxido de carbono agrícola o mejorar el secuestro de carbono contribuyen una práctica agrícola sostenible. En este artículo se presentan los efectos de la aplicación de biofertilizantes (Bacillus megaterium, Bacillus circulans, y Pseudomonas putida) en la respiración del suelo, en el suelo chernozem. Los experimentos se realizaron en la Estación Experimental de Látókép, perteneciente a la Universidad de Debrecen, Hungría. Además, estos resultados se compararon con los hallazgos de estudios anteriores relacionados con aplicaciones comerciales de fertilizantes NPK (en cuatro dosis: N60P45K45; N120P90K90; N180 P135K135;  and N240P180K180), y dos métodos de cultivo (arado, aflojado, RTKen filas y RTK entre filas); estas investigaciones se llevaron a cabo en la misma estación experimental. Los resultados indican una menor tendencia a la respiración del suelo cuando se aplican biofertilizantes en comparación con los fertilizantes NPK comerciales, lo que permite disminuir la emisión de CO2 en el medio ambiente. También se discutió un cambio unitario en los diferentes métodos basados en la absorción de álcalis (Oxitop y Witkamp) para facilitar la comparación de los datos adquiridos recientemente con los resultados anteriores de experimentos de fertilización a largo plazo.

Detalles del artículo

Sección
sección monográfica

Referencias

Álvaro-Fuentes, J. and Cantero-Martínez, C. 2010. "Potential to mitigate anthropogenic CO. emissions by tillage reduction in dryland soils of Spain." Spanish J. Agricultural Research 8(4): 1271-1276.

Ashok J., Falbo L., Das S., Dewangan N., Visconti CG., Kawi S. 2019. "Catalytic CO2 Conversion to Added-Value Energy Rich C1 Products. In: Aresta M., Karimi I., Kawi S. (eds)" An Economy Based on Carbon Dioxide and Water. Springer, Cham.

Baldock, JA, Wheeler, I., Mckenzue, N., McBrateny, A. 2012. "Soils and climate change: Potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture." Crop Pasture Sci. 63, 269–283.

Bautista, G., Mátyás, B., Carpio, I. et al. 2017. "Unexpected results in Chernozem soil respiration while measuring the effect of a bio-fertilizer on soil microbial activity." F1000Research 6:1950 (https://doi.org/10.12688/f1000research.12936.2)

Bunk, B., Schulz, A., Stammen, S., MünchH, R., Warren, M., Rohde, M., Jahn, M. and Biedendieck, R. (2010). "A short story about a big magic bug." Bioengineered Bugs 1: 85–91.

Buzás, I. 1988. "Manual of Soil and Agrochemical Analysis." INDA 4231 Kiadó. Budapest, 1988: 1.

Brebbia, C. A., & Bjornlund, H. (Eds.). (2014). Sustainable Irrigation and Drainage V: Management, Technologies and Policies (Vol. 185). WIT Press.

Chen, J. et al. 2020. "Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest". Soil Biology and Biochemistry. Pergamon, 142, p. 107708. doi: 10.1016/j.soilbio.2020.107708.

DeVos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K-H. and Whitman, W. 2009. "Bergey's Manual of Systematic Bacteriology" Vol. 3: The Firmicutes. Springer-Verlag, New York.

DenMan, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Hollanf, D. Jacon, U. Lohmann, S Ramachandran, P.L. DA Silva Dias, S.C. Wofsy, X. Zhang. 2007 "Couplings Between Changes in the Climate System and Biogeochemistry." In: Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Elmqvist, T., Andersson, E., Frantzeskaki, N. "Sustainability and resilience for transformation in the urban century." Nat Sustain 2019 2, 267–273 10.1038/ s41893-019-0250-1

Espinosa-Urgel, M., Salido, A., Ramos, J. 2000. “Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds”. J. Bacteriology 182(9): 2363-9. DOI: 10.1128/jb.182.9.2363-2369.2000

El-Yazeid, A., Abou-Aly, H., Mady, M., MOUSSA, S. 2007. "Enhancing growth, productivity and quality of squash plants using phosphate dissolving microorganisms (bio phosphor) combined with boron foliar spray." Research J. Agricultural Biological Science 3(4): 274-286.

Fekete, I., Kotroczó, Zs., Varga, Cs., Nagy, P.T., Várbíró, G., Bowden, R.D., Tóth, J.A., Lajtha, K. 2014. "Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in Central-European deciduous forest." Soil Biology and Biochemistry 74: 106-114.

Fekete, I., Kotroczó, Zs., Varga, Cs., Veres, Zs., Tóth, J.A. 2011. "The effects of Detritus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest." Acta Silv. Lign. Hung. 7: 87-96.

Francis, C. A.; Porter, P. 2011. "Ecology in Sustainable Agriculture Practices and Systems." Critical Reviews in Plant Sciences 30(1-2): 64-73. DOI: 10.1080/07352689.2011.554353

Glatzel, S., Basiliko, N., & Moore, T. 2004. "Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, Eastern Quebec, Canada." Wetlands 24: 261-267. doi: 10.1672/0277-5212(2004)024[0261:cdampp]2.0.CO;2

Gordon, R., Haynes, W., Pang, C. 2015. "Bacterial Endospores. Bacterial Endospores." Cornell University, March 6, 2015. Web. 10 Dec. 2015. In: The genus Bacillus. U.S. Department of Agriculture Agricultural Handbook no. 427. U.S. Department of Agriculture, Washington, D.C., 1973.

Inubushi, K., Sakamoto, K., Sawamoto, T. 2005. "Properties of microbial biomass in acid soils and their turnover." Soil Sci. Plant Nutr 51: 605–608.

IPCC: Climate Change. 2014. "Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change" [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland.

Iqbal, J., Hu, R., Feng, M., Lin, S., Malghani, S., & Ali, I. M. 2010. “Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China.” Agriculture, Ecosystems & Environment. 137(3-4), 294–307. doi:10.1016/j.agee.2010.02.015

Jakab, A. 2020. "The ammonium lactate soluble potassium and phosphorus content of the soils of north-east Hungary region: a quantifying study." DRC Sustainable Future 1(1): 7-13. DOI: 10.37281/DRCSF/1.1.2

Johnson, J., Franzluebbers, A., Weyers, S., Reicosky, D. 2007. "Agricultural opportunities to mitigate greenhouse gas emissions." Environ Pollut 150(1): 107-124.

Kong, Y., Nagano, H., Katai, J., Vago, I., Olah, A. Z., Yashima, M., Inubushi, K. 2013. "CO., N.O and CH. production/consumption potentials of soils under different land-use types in central Japan and eastern Hungary." Soil Science Plant Nutrition 59: 455-462. doi: 10.1080/00380768.2013.775005

Eloka-Eboka, A. C. and Inambao, F. L. 2017. "Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production", Applied Energy. 195: 1100–1111. doi: 10.1016/j.apenergy.2017.03.071.

Gilbert. 2012. "One-third of our greenhouse gas emissions come from agriculture." Nature (news). doi:10.1038/nature.2012.11708

Gratani, L. et al. 2016. "Carbon Dioxide (CO2) Sequestration and Air Temperature Amelioration Provided by Urban Parks in Rome", Energy Procedia. Elsevier, 101: 408–415. doi: 10.1016/j.egypro.2016.11.052.

Klimes-Szmik A. 1970. "A talajok fizikai tulajdonságainak vizsgálata." Talaj és trágyvizsgálati módszerek. 1970; (48): 83–161.

Kotroczó, Zs., Fekete, I., Tóth, J.A., Tóthmérész, B., Balázsy, S. 2018. "Effect of leaf- and root-litter manipulation for carbon-dioxide efflux in forest soi." VII. Alps-Adra Scientific Workshop. Stara Lesna, Slovakia, 2008.

Lajtha, K., Bowden, R.D., Crow, S., Fekete, I., Kotroczó, Zs., Plante, A., Simpson, M., Nadelhoffer, K. 2017. "The Detrial Input and Removal Treatment (DIRT) Network: Insight into soil carbon stabilization." Science of The Total Environment 640-641:1112-1120.

Li, S. et al. 2020. "A meta-analysis of carbon, nitrogen and phosphorus change in response to conversion of grassland to agricultural land" Geoderma 363: 114149. doi: 10.1016/j.geoderma.2019.114149.

López, R., Díaz, M. J. and González-Pérez, J. A. 2018. "Extra CO2 sequestration following reutilization of biomass ash". Science of the Total Environment. 625: 1013–1020. doi: 10.1016/j.scitotenv.2017.12.263.

Lowy, D.A. and Mátyás, B. 2020. "Sea Water Activated Magnesium-Air Reserve Batteries: Calculation of Specific Energy and Energy Density for Various Geometries." DRC Sustainable Future 2020, 1(1),1-6. DOI: 10.37281/DRCSF/1.1.1

Mátyás, B., Tállai, M., Kátai, J. et al. 2015. "The impact of fertilisation on a few microbiological parameters of the carbon cycle." Acta Agraria 64: 45–50.

Mátyás, B., Horváth, J., & Kátai, J. 2016. “Comparative analysis of certain soil microbiological characteristics of the carbon cycle”. Acta Agraria Debreceniensis, (69), 137-141.

Melendez, J. R. et al. 2018a. "Strategic factors in the context of project management: Management perspectives." Espacios. Revista Espacios 39(39). Retrieved from http://www.revistaespacios.com/a18v39n39/18393910.html

Melendez, J. R. et al. 2018b. "Theory of Constraints: A systematic review from the management context." Espacios, 39(48). Retrieve from http://www.revistaespacios.com/a18v39n48/18394801.html

Melendez, J. R. and Gracia, G. E. 2019c. "Theoretical perspective of corporate social responsibility in the managerial scenario: Shared implications between the company-stakeholders", Espacios, pp. 1–14. Retrieve from http://www.revistaespacios.com/a19v40n10/19401001.html

Moral, A., Reyero,I., Alfaro, C., Bimbela,F., Gandía, LM. 2018. "Syngas production by means of biogas catalytic partial oxidation and dry reforming using Rh-based catalysts." Catalysis Today 299:280-288.

Peng, Y. et al. 2020. "Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest." Soil Biology and Biochemistry. 142: 107694. doi: 10.1016/j.soilbio.2019.107694.

Powlson, D. Will soil amplify climate change?. Nature 433, 204–205 (2005). https://doi.org/10.1038/433204a

Rustad, LE., Campbell, JL., Marion, GM., Norby, R.J, Mitchell, MJ., Hartley, AE., Cornelissen, JHC., Gurevitch, J. 2001. "A metaanalysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming." Oecologia 126, 543–562.

Sándor, Zs., Tállai, M., Kincses, I., László, Z., Kátai, J., Vágó, I. 2020. "Effect of various soil cultivation methods on some microbial soil properties." DRC Sustainable Future 1(1): 14-20. DOI: 10.37281/DRCSF/1.1.3

Sándor, Zs. 2020. "Authors' correction for "Effect of various soil cultivation methods on some microbial soil properties."" DRC Sustainable Future 1(1): 21-22. DOI: 10.37281/DRCSF/1.1.31

Singla, A., Sakata, R., Hanazawa, S., Inubushi, K. 2014. "Methane production/oxidation potential and methanogenic archaeal diversity in two paddy soils of Japan." Int. J. Ecology Environm. Sciences 40: 49-55.

Singla, A., Inubushi, K. 2014. "Effect of biochar on CH. and N.O emission from soils vegetated with paddy. " Paddy and Water Environment 12: 239-243. doi: 10.1007/s10333-013-0357-3

Thornton, P. 2012. "Recalibrating Food Production in the Developing World: Global Warming Will Change More Than Just the Climate." CCAFS Policy Brief no. 6. (CGIAR Research Program on Climate Change, Agriculture and Food Security, 2012).

Vary, S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W., Jahn, D. 2007. "Bacillus megaterium – from simple soil bacterium to industrial protein production host." Appl. Microbial Biotechnol 76: 957–967.

Vermeulen, SJ., Campbell, BM., Ingram, JSI. 2012. Annu. Rev. Environ. Resour. 37, 195–222.

Witkamp,­M.­ 1966. “­Decomposition ­of ­leaf ­litter ­in ­relation ­to environment ­microflore ­and ­microbial ­respiration. ­Ecology.­47: 194–201.­

Xiao, H. et al. 2020. "Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China." Applied Soil Ecology 103484. doi: 10.1016/j.apsoil.2019.103484.

Zeng, W. et al. 2018. "Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands." Soil Biology and Biochemistry 124: 255–265. doi: 10.1016/j.soilbio.2018.06.019.