Transfer Learning for Binary Classification of Thermal Images

Main Article Content

Daniel Alexis Pérez-Aguilar https://orcid.org/0000-0003-4514-2873
Redy Henry Risco-Ramos https://orcid.org/0000-0002-3491-6020
Luis Casaverde-Pacherrez https://orcid.org/0000-0003-4037-1802

Abstract

The classification of thermal images is a key aspect in the industrial sector, since it is usually the starting point for the detection of faults in electrical equipment. In some cases, this task is automated through the use of traditional artificial intelligence techniques, while in others, it is performed manually, which can lead to high rates of human error. This paper presents a comparative analysis between eleven transfer learning architectures (AlexNet, VGG16, VGG19, ResNet, DenseNet, MobileNet v2, GoogLeNet, ResNeXt, Wide ResNet, MNASNet and ShuffleNet) through the use of fine-tuning, in order to perform a binary classification of thermal images in an electrical distribution network. For this, a database with 815 images is available, divided using the 60-20-20 hold-out technique and cross-validation with 5-Folds, to finally analyze their performance using Friedman test. After the experiments, satisfactory results were obtained with accuracies above 85 % in 10 of the previously trained architectures. However, the architecture that was not previously trained had low accuracy; with this, it is concluded that the application of transfer learning through the use of previously trained architectures is a proper mechanism in the classification of this type of images, and represents a reliable alternative to traditional artificial intelligence techniques.