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Abstract Resumen
The early detection of diabetic retinopathy remains
a critical challenge in medical diagnostics, with deep
learning techniques in artificial intelligence offering
promising solutions for identifying pathological pat-
terns in retinal images. This study evaluates and com-
pares the performance of three convolutional neural
network (CNN) architectures ResNet-18, ResNet-50,
and a custom, non-pretrained CNN using a dataset of
retinal images classified into five categories. The find-
ings reveal significant differences in the models’ abil-
ity to learn and generalize. The non-pretrained CNN
consistently outperformed the pretrained ResNet-18
and ResNet-50 models, achieving an accuracy of 91
% and demonstrating notable classification stability.
In contrast, ResNet-18 suffered severe performance
degradation, with accuracy dropping from 70 % to
26 %, while ResNet-50 required extensive tuning to
improve its outcomes. The non-pretrained CNN ex-
celled in handling class imbalances and capturing
complex diagnostic patterns, emphasizing the poten-
tial of tailored architectures for medical imaging tasks.
These results underscore the importance of design-
ing domain-specific architectures, demonstrating that
model complexity does not necessarily guarantee bet-
ter performance. Particularly in scenarios with limited
datasets, well-designed custom models can surpass
pre-trained architectures in diagnostic imaging appli-
cations.

La detección temprana de la retinopatía diabética
representa un desafío crítico en el diagnóstico médico,
donde el aprendizaje profundo dentro del campo de
la inteligencia artificial emerge como una herramienta
prometedora para optimizar la identificación de pa-
trones patológicos en imágenes retinales. Este estudio
evaluó comparativamente tres arquitecturas de re-
des neuronales convolucionales ResNet-18, ResNet-50
y una CNN personalizada o no-preentrenada para
clasificar imágenes de retinopatía diabética en un
conjunto de datos de imágenes agrupadas en cinco
categorías, revelando diferencias significativas en su
capacidad para aprender y generalizar. Los resultados
demostraron que la arquitectura de red neuronal con-
volucional no-preentrenada superó consistentemente
a los modelos preentrenados basados en ResNet-18
y ResNet-50, alcanzando una precisión del 91 % y
una notable estabilidad en la clasificación. Mientras
ResNet-18 mostró limitaciones severas, degradándose
de un 70 % a un 26 % de precisión, y ResNet-50
requirió ajustes para mejorar su rendimiento, la CNN
no preentrenada exhibió una capacidad sobresaliente
para manejar el desbalance de clases y capturar pa-
trones diagnósticos complejos. El estudio subraya la
importancia de diseñar arquitecturas específicamente
adaptadas a problemas médicos, destacando que la
complejidad no garantiza necesariamente un mejor
desempeño, y que un diseño cuidadoso puede superar
modelos preentrenados en tareas de diagnóstico por
imagen cuando la cantidad de datos con que se cuenta
es limitada.
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1. Introduction

The retina, located at the back of the eye, is a vital
layer of light-sensitive cells essential for vision. Unfor-
tunately, it is susceptible to various diseases, among
which diabetic retinopathy (DR) stands out as one of
the most common and serious conditions (Figure 1).
DR is an ocular complication of diabetes, character-
ized by damage to the blood vessels in the retina [1].
This vascular damage can lead to several pathological
issues, including:

• Obstruction of blood flow. Blocked blood ves-
sels hinder sufficient blood supply to the retina,
potentially resulting in the death of retinal cells
and subsequent vision loss.

• Blood leakage. Damaged blood vessels may
leak blood and other fluids into the retina, caus-
ing swelling and blurred vision.

• Growth of abnormal blood vessels. As a
response to oxygen deprivation, the retina can
develop new abnormal blood vessels which may
be fragile and prone to bleeding.

Figure 1. Diabetic retinopathy

Diabetic retinopathy (DR) is more prevalent among
individuals with type 1 and type 2 diabetes, particu-
larly those who fail to maintain adequate blood sugar
control [2]. Additional risk factors include hypertension,
hypercholesterolemia, smoking, overweight or obesity,
and pregnancy. In its early stages, DR often presents
without noticeable symptoms.

However, as the disease progresses, symptoms
may manifest, including blurred vision, dark spots or
floaters, difficulty seeing at night, distorted vision, and
even vision loss. Early detection and timely treatment
are essential to prevent permanent vision impairment.
Therefore, regular eye examinations are strongly rec-
ommended for individuals with diabetes, particularly
those with additional risk factors, to facilitate early
intervention and management.

Computer science focuses on designing and devel-
oping systems and algorithms capable of performing
tasks that typically require human intelligence, such as
learning, perception, reasoning, and problem-solving.
This discipline forms the foundation of artificial intelli-
gence (AI) [3]. AI integrates techniques from computer
science, statistics, logic, and mathematics to create
systems that can autonomously learn from data and
enhance their performance in real time.

Artificial intelligence (AI) has emerged as a promis-
ing tool for DR detection. Machine Learning algorithms
can analyze retinal images and identify subtle patterns
indicative of the disease. This technology holds signifi-
cant potential to enhance the accuracy and efficiency
of DR diagnosis, enabling earlier detection and facili-
tating timely interventions.

DR is a severe complication of diabetes that can
lead to vision loss if left untreated. Early detection
and timely intervention are critical to preventing dis-
ease progression and mitigating its impact. Artificial
intelligence (AI) has emerged as a promising tool to
enhance the detection of DR, offering more precise
and efficient diagnostic capabilities and contributing
to the preservation of visual health in individuals with
diabetes.

Predictive models, which provide forecasts for di-
chotomous outcomes (distinct yet complementary re-
sults), are widely utilized in medical applications. Fig-
ure 2 illustrates an evaluation of the most relevant
models employed in this domain [4]. Deep learning, a
prominent field within artificial intelligence, enables
machines or computers to learn and analyze data in
a manner akin to human intelligence [5]. This study
examines the behavior of various deep learning-based
models, highlighting their capability to leverage multi-
ple processing layers to facilitate learning from data
representations at multiple levels of abstraction [6].

Figure 2. Deep learning model

Numerous pre-trained ResNet implementations are
available across various machine learning frameworks,
including TensorFlow, PyTorch, Keras, and MXNet.
Each framework offers its own variants and specific
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optimizations, making the selection of an appropri-
ate pre-trained ResNet model crucial for addressing
a particular task. Key factors to consider when se-
lecting a model include the size and complexity of
the dataset, the nature of the task (e.g., classification,
object detection, or segmentation), and the computa-
tional resources available.

The variety of pre-trained ResNet architectures
available is extensive, offering a range of options tai-
lored to different tasks and requirements. Selecting the
appropriate pre-trained ResNet model depends on the
specific objectives of the project and the characteristics
of the problem to be addressed. For this study, which
focuses on disease recognition through the analysis of
ocular images using supervised learning in a classifi-
cation framework, ResNet models were chosen due to
their demonstrated acceptable performance in prior
studies involving other types of images. This research
evaluates the performance of artificial neural network
models, specifically pre-trained convolutional neural
networks (CNNs) such as ResNet-18 and ResNet-50,
as depicted in Figure 3.

Figure 3. CNN model

2. Materials and methods

2.1. Methodology

Deep learning (DL), a subfield of Machine Learning
(ML), represents more than a mere analysis technique
(Figure 4). It is a comprehensive methodology that
encompasses the entire data science pipeline, includ-
ing data collection, preparation, exploration, modeling,
and evaluation. This approach enables the identifica-
tion of patterns, the generation of predictions, and
informed decision-making. Unlike traditional statisti-
cal methods, which rely on predefined rules and static
models, ML employs algorithms that learn directly
from the data. These algorithms adapt to the data’s
complexity and evolve over time, improving perfor-
mance as they are exposed to larger and more diverse
datasets. This adaptability is particularly evident in
models based on artificial neural networks, which com-
prise numerous interconnected neurons organized into
layers. These networks follow a hierarchical structure,
as depicted in Figure 5.

Figure 4. Analysis technique - ML

Figure 5. Analysis technique - ML

2.2. The data set

The study dataset utilized in this research comprises
3,662 retinal images sourced from the Kaggle AP-
TOS 2019 Blindness Detection (BD) online community.
These images are classified based on the severity of di-
abetic retinopathy, categorized as no diabetic retinopa-
thy, mild, or severe diabetic retinopathy.

Table 1 provides an overview of the dataset, which
consists of 3,662 medical images sourced from the Kag-
gle online community.

Table 1. Medical image segmentation

Type Name Number of images Percentage
0 No DR 1805 49.29%
1 Mild 370 10.10%
2 Moderate 999 27.28%
3 Severe 193 5.27%
4 Proliferative 295 8.06%

Total 3662 100%
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2.3. Treatment and adjustment of images

Due to variations in acquisition conditions and equip-
ment, many images in the dataset display differences
in retinal alignment and quality. To address these
inconsistencies and enable the models to learn net-
work properties more efficiently, an image-processing
method was implemented using the OpenCV library
in Python.

The preprocessing steps included Gaussian blurring
and circular cropping. A contour was drawn around
each image, followed by the application of a Gaussian
filter. This process reduces high-frequency components,
enhancing the clarity of key features in each image
and improving their suitability for analysis.

2.4. Description of the variables

Figure 6 illustrates the different levels of diabetic
retinopathy (DR), which are categorized as follows:

• Level 0 (No DR). This level indicates a non-
pathological state, meaning the absence of dia-
betic retinopathy.

• Level 1 (Mild). This stage is characterized
by mild non-pathological diabetic retinopathy,
where microaneurysms (red spots) are present.
These microaneurysms are the source of hard
exudates, which appear as high-contrast yellow
spots.

• Level 2 (Moderate). At this stage, blood ves-
sel distortion and swelling may occur, potentially
compromising their ability to transport blood
effectively.

• Level 3 (Severe). This stage is marked by
significant blockage of blood vessels, leading to
impaired blood supply to the retina.

• Level 4 (Proliferative). This is the most ad-
vanced stage, characterized by the secretion of
growth factors by the retina, stimulating the pro-
liferation of new blood vessels. These abnormal
vessels grow within the retina and extend into
the vitreous gel, filling the eye.

Figure 6. Types of retinopathies

Each stage of diabetic retinopathy has distinct char-
acteristics and properties. However, during analysis,

clinicians may overlook certain details, which could
increase the likelihood of an incorrect diagnosis.

2.5. Analysis of data

Initially, the images were downloaded and uploaded
to Google Drive. Subsequently, they were organized
into directories corresponding to each level of diabetic
retinopathy, ensuring accurate differentiation. The crit-
ical factor for verifying the correctness of the results
lies in the data associated with each retinal image,
which is securely stored in the cloud.

The dataset stored in the cloud was used to enable
algorithms in Google Colab to access the necessary
information for training. The correctness of the results
is determined by comparing the output of the classifier
model or algorithm with the information available in
the cloud. If the results match, it can be concluded
that the classification is accurate; otherwise, the re-
sult is deemed incorrect. Once the training of each
algorithm is completed and the results are obtained,
a comparative analysis is conducted to evaluate their
performance and identify the most efficient algorithm
for solving the proposed problem.

Classification problems in machine learning are
broadly divided into two main categories: binary prob-
lems and multi-class problems. The key distinction
lies in the number of classes the model is required to
identify within the data. In the case of binary prob-
lems, the model distinguishes between only two classes.
These problems are characterized by simplicity, as bi-
nary models are generally easier to train and interpret
due to the limited number of classes involved. Under-
standing the model’s decisions is also more straight-
forward, as there are only two possible outcomes. In
contrast, multi-class classification involves distinguish-
ing between more than two classes, increasing the
complexity of the task. These problems are more chal-
lenging to train and interpret due to the larger number
of classes and the intricate relationships between them.
Convolutional neural networks (CNNs) are particu-
larly well-suited for solving multi-class problems, but
interpreting the decisions of such models can be more
difficult, given the wider range of potential outcomes.

2.6. Validation metrics

Confusion matrix

The confusion matrix plays a crucial role in identify-
ing errors, enabling both descriptive and analytical
evaluations of classification models. It displays the
various correct and incorrect assignments made by the
model [7]. Using the values provided by the confusion
matrix, key evaluation metrics can be calculated to
assess the model’s performance, as illustrated in Figure
7.
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Figure 7. Confusion matrix

The confusion matrix is an essential tool for vali-
dating neural networks, particularly in classification
tasks. It offers detailed insights into the model’s per-
formance by quantifying the number of correct and
incorrect predictions for each class.

Among the metrics derived from the confusion
matrix and commonly applied to classification tasks
in convolutional neural networks (CNNs) are accu-
racy and loss. These performance metrics are widely
used to evaluate image classification models, both
in pre-trained convolutional neural networks (pre-
trained CNNs) and models developed using scikit-learn
(sklearn). However, it is crucial to understand their
limitations and to use them in conjunction with other
metrics for a more comprehensive evaluation of the
model’s performance.

Accuracy

It represents the proportion of correct predictions made
by the model, calculated as the number of correct pre-
dictions divided by the total number of predictions.
It is an intuitive and straightforward metric to inter-
pret; a high accuracy value indicates that the model
is generally making accurate predictions. Accuracy is
also a useful metric for quickly and easily compar-
ing different models. However, accuracy is sensitive
to the distribution of classes. If one class dominates
the dataset, the model may achieve high accuracy by
predominantly predicting the majority class, even if its
performance on other classes is poor. This limitation
makes accuracy less reliable in the presence of class
imbalance.

Loss

It represents the average error of the model’s predic-
tions and is calculated as the sum of the individual
errors for each prediction. It provides insight into the
magnitude of the error, where a lower loss value indi-
cates that the model is making predictions with smaller
overall errors. Loss plays a crucial role in optimizing
the model. During training, it is used to adjust the
weights of the neural network to minimize error and

improve performance. The interpretation and scale of
the loss depend on the specific loss function used, as
different loss functions may have varying meanings
and scales. However, loss can be influenced by class
imbalance, which should be carefully considered when
evaluating the model’s performance.

For pre-trained convolutional neural networks
(CNNs), the effectiveness of accuracy and loss met-
rics depends on the quality of the pre-trained model
and its suitability for the specific classification task.
Careful selection of the pre-trained network, along
with appropriate hyperparameter tuning, is essential
to optimize performance and ensure accurate evalua-
tion. In models developed using sklearn, accuracy and
loss metrics are directly applicable to classification
tasks. However, it is crucial to account for the specific
characteristics of the model and the classification prob-
lem when selecting appropriate metrics and evaluation
techniques.

The effectiveness and reliability of accuracy and
loss metrics depend on several factors, including the
complexity of the problem, the quality of the data,
the model architecture, and the additional metrics em-
ployed. It is essential to understand the limitations
of these metrics and to use them responsibly in con-
junction with other evaluation methods to ensure a
comprehensive and robust assessment of image classi-
fication models.

2.7. Deep learning models utilized

2.7.1. Pre-trained models

The pre-trained neural networks employed in this study
are based on the residual network (ResNet) architec-
ture, which addresses the problem of gradient degrada-
tion by incorporating residual blocks. A residual block
serves as a fundamental building unit in ResNets and
consists of two paths within the network:

1. Main path: This path includes the convolu-
tional or fully connected layers typical of a deep
neural network.

2. Direct path: This is a direct connection that
bypasses the layers in the main path, adding its
output directly to the output of the main path.

This dual-path structure enables information to
propagate through the network without being dis-
torted by the transformations applied in the main
path. Consequently, it simplifies the learning process
and facilitates the training of much deeper neural net-
works compared to traditional architectures. For this
study, two variants of ResNet were utilized: ResNet-18
and ResNet-50.
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ResNet-18

It is an 18-layer deep convolutional neural network, as
illustrated in Figure 8. Due to its relatively shallow
architecture, ResNet-18 can effectively retain low-scale
features, making it appropriate for serving as a feature
extractor (encoder). The ResNet-18 architecture com-
prises 16 convolutional layers, 2 down sampling layers,
and several fully connected layers [8].

Figure 8. ResNet-18 model

ResNet-50

It is a convolutional artificial neural network with a
depth of 50 layers, as depicted in Figure 9. It can uti-
lize a pre-trained version trained on over one million
images from the ImageNet database [9]. The ResNet-
50 architecture consists of 48 convolutional layers, one
MaxPooling layer, and one average pooling layer. It
requires approximately 3.8 × 109 floating-point opera-
tions.

Figure 9. ResNet-50 Model

2.7.2. Non-pretrained models

The non-pretrained convolutional neural network
(CNN) architecture utilized in this study consists of
three 2D convolutional layers with 8, 16, and 32 filters,
respectively. Each filter has a size of 3 x 3, ensuring
that each convolution operation processes a3pixel x 3
pixel region of the input. The network also includes
three pooling layers, three dense layers with 64, 32,

and 3 neurons, respectively, and two dropout layers,
each with a dropout rate of 15%.

Convolutional neural networks (CNNs) are a type
of artificial intelligence algorithm based on multilayer
neural networks. These networks are designed to learn
and extract relevant features from images, as illus-
trated in Figure 10. CNNs are capable of performing
various tasks, including object classification, detec-
tion, and segmentation [10]. They are a fundamental
component of the field of deep learning [11].

Figure 10. CNN

The Principal Component Analysis (PCA) model
was also utilized in this study. PCA is a highly effective
statistical technique widely applied in fields such as
facial recognition and image compression. It is com-
monly used to identify patterns in high-dimensional
data [12].

The ReLU (Rectified Linear Unit) activation func-
tion was employed in the convolutional neural net-
works (CNNs) used in this study. Its primary role is
to enhance the nonlinear activation properties of the
network without altering the receptive fields of the
convolutional layers [13].

Convolutions

A convolution in an image is a pixel-by-pixel trans-
formation achieved by applying a specific operation
defined by a set of weights, commonly referred to as
a filter. The convolutional layer in a neural network
consists of a collection of learnable filters. Each filter
is spatially small in terms of width and height but ex-
tends across the entire depth of the input volume [14].

Submapping

The pooling layer, also referred to as the subsampling
layer, serves to progressively reduce the spatial dimen-
sions of the representation, as illustrated in Figure 11.
This reduction minimizes the number of parameters
and computational complexity within the network [14].

Figure 11. Submapping
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Pooling layer

The pooling layer is utilized to reduce the dimensions of
the feature maps, with the primary objective of decreas-
ing processing times while preserving the most critical
information. This dimensionality reduction helps miti-
gate overfitting in the network and introduces a degree
of translation invariance [15].

Retinographies

Retinography is a diagnostic procedure that captures
a non-invasive, painless color image of the fundus of
the eye [16].

How CNNs work

Convolutional Neural Networks (CNNs) operate
through machine learning [17] and supervised learn-
ing [18], leveraging several key components that func-
tion in an integrated manner. The core of CNNs lies
in their convolutional layers, which perform convolu-
tion operations to analyze input images using small
filters (kernels). These filters extract relevant features,
such as edges, textures, and patterns, through matrix
multiplication. By sliding across the image, the filters
generate convolutional feature maps [19].

Activation functions

Following the convolution operation, a nonlinear ac-
tivation function, such as the Rectified Linear Unit
(ReLU), is applied. This introduces nonlinearity into
the model, enabling it to capture and extract more
complex features.

Pooling layers

These layers are employed to reduce the dimensional-
ity of feature maps by summarizing the information
extracted by the convolutional layers. This operation
is typically performed using techniques such as max
pooling or average pooling, which effectively reduce the
size of the features while retaining their most relevant
information.

Fully connected layers

After passing through multiple convolutional and pool-
ing layers, the extracted information is flattened and
fed into one or more dense (fully connected) layers.
These layers perform classification or regression opera-
tions to generate the final output.

Regularization

To prevent overfitting and enhance the generalization
capabilities of the model, regularization techniques are
employed. These include methods such as dropout,

which randomly deactivates neurons during training
to reduce reliance on specific features, and batch nor-
malization, which normalizes the activations of inter-
mediate layers.

Loss function and optimization

During training, a loss function is employed to quantify
the discrepancy between the model’s predictions and
the actual labels. Optimization algorithms, such as
stochastic gradient descent (SGD) and its variants, are
then used to minimize this loss. By iteratively adjust-
ing the weights of the neural network, these algorithms
enhance the model’s performance and predictive accu-
racy.

3. Results and discussion

ResNet (Residual Networks) addresses degradation is-
sues in deep neural networks by introducing residual
blocks. The primary differences among ResNet models
lie in their depth, the size of the residual blocks, learn-
ing capacity, and computational cost. The training
process was conducted in two phases, incorporating
both the pre-trained ResNet models and the non-pre-
trained CNN. This was performed using a dataset with
imbalanced class distributions.

Phase-1

As shown in Table 2, during the training of the ResNet-
18 model, the loss on the training set was observed
to be 86%, while the validation loss (val_loss) was
significantly higher, reaching 194%. This was accompa-
nied by an accuracy of 60% and a validation accuracy
(val_accuracy) of 70%. These results indicate potential
calibration issues, early stopping, or improper training
configurations caused by factors such as underfitting,
excessive regularization, non-representative data, or
sampling problems. For the ResNet-50 model, the train-
ing loss was 132%, and the validation loss was 126%,
with training accuracy at 48% and validation accu-
racy at 54%. These metrics suggest challenges related
to the model’s learning and generalization capacity,
possibly due to its increased complexity and computa-
tional requirements. In contrast, the non-pre-trained
CNN demonstrated superior performance, achieving a
training loss of 19% and a validation loss of 22%, with
training and validation accuracies of 92% and 91%, re-
spectively. The alignment of loss and accuracy metrics
between the training and validation sets indicates that
this model is generalizing well and effectively learning
from the data.

As shown in Figure 12, a significant number of sam-
ples were classified into class 0 (No DR) with a count
of 330. Class 1 (Mild) contained 19 samples, class 2
(Moderate) included 87 samples, class 3 (Severe) had
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20 samples, and class 4 (Proliferative) comprised 35
samples.

Table 2. Training and validation phase-1

ResNet-18 ResNet-50 CNN
Loss in training

0.86 1.32 0.19(loss)
Training precision 0.6 0.48 0.92(accuracy)
Loss in validation 1.94 1.26 0.22(val_loss)
Validation precision

0.7 0.54 0.91(val_accuracy)

Figure 12. Confusion matrix ResNet18

Phase-2

In Phase-2, a series of adjustments were made to the hy-
perparameter configurations of the ResNet-18, ResNet-
50, and non-pretrained CNN models to develop a ro-
bust and consistent model. As indicated in Table 3, the
ResNet-based models showed no notable improvements
compared to the results obtained in Phase-1. In con-
trast, the non-pretrained CNN model demonstrated
significant enhancement in performance and precision,
achieving an accuracy of 94%, a validation accuracy
(val_accuracy) of 93%, a loss of 18%, and a validation
loss (val_loss) of 19%. These metrics indicate effective
generalization of the acquired knowledge, with con-
sistent and reliable results. The non-pretrained CNN
model clearly outperformed the ResNet-based models
and proved to be a superior and more suitable choice
for predicting Hepatic Retinopathy.

Table 3. Training and validation phase-2

ResNet-18 ResNet-50 CNN
Loss in training

0.83 0.065 0.18(loss)
Training precision 0.68 0.48 0.94(accuracy)
Loss in validation 1.88 0.2 0.19(val_loss)
Validation precision

0.26 0.83 0.93(val_accuracy)

As depicted in Figure 13, a large number of samples
were classified into class 0 (No DR), with a count of
351. Class 1 (Mild) included 8 samples, class 2 (Mod-
erate) comprised 162 samples, class 3 (Severe) had 25
samples, and class 4 (Proliferative) accounted for 23
samples.

Figure 13. Confusion matrix ResNet50

The results obtained from the ResNet-based mod-
els raise several issues for discussion. The high loss
observed in both training and validation phases may
be attributed to the class imbalance within the dataset.
Additionally, the combination of low accuracy values
and high loss suggests that the models are not learning
effectively from the data. This could be due to a lack
of convergence or suboptimal hyperparameter configu-
rations, leading to underfitting. Although ResNet-50
is inherently more powerful than ResNet-18 due to its
greater depth and capacity, it may not be adequately
suited or sufficiently tailored to the specific problem
at hand.

The loss and accuracy indicators observed in Phase-
1 and Phase-2 underscore the effectiveness of the non-
pretrained CNN model. The high accuracy in both the
training and validation sets suggests that the model
successfully captures the patterns within the data and
generalizes the acquired knowledge effectively. The
minimal discrepancy between the training accuracy
and validation accuracy (val_accuracy) is within ac-
ceptable limits and may be attributed to noise in the
data or slight variations between the training and vali-
dation datasets.

The proposed approach for diabetic retinopathy
detection offers significant advantages through its rig-
orous benchmarking of multiple neural network archi-
tectures. This process provides a comprehensive under-
standing of how various artificial intelligence models
address a complex medical problem. The methodology
is particularly notable for its ability to highlight the
strengths and limitations of each architecture, demon-
strating that increased model complexity does not
necessarily translate into superior performance. The
non-pretrained CNN emerged as a highly innovative
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solution, achieving consistent accuracy exceeding 90%,
robust generalization capabilities, and efficient han-
dling of class imbalance key factors in diagnosing dis-
eases characterized by rare but potentially severe pre-
sentations.

Despite its strengths, the proposed approach has
notable limitations that warrant consideration. The
reliance on a specific neural network architecture may
restrict the transferability of the solution to other med-
ical contexts, as the design is highly tailored to the
dataset used in this study. Furthermore, the research
highlighted the challenges faced by pre-trained mod-
els, such as ResNet-18 and ResNet-50, in adapting to
medical datasets with complex and intricate features.
This underscores the need for additional strategies, in-
cluding advanced resampling techniques, weighted loss
functions, and the augmentation of domain-specific
data. These complexities introduce a more labor in-
tensive development process, necessitating specialized
expertise in both machine learning and the specific
medical domain.

4. Conclusions

This analysis provided critical insights into the perfor-
mance of various artificial intelligence models for the
detection of diabetic retinopathy, highlighting signifi-
cant variability among the evaluated neural network
architectures [20].

ResNet-18 demonstrated critical limitations, with
accuracy declining dramatically from an initial 70% to
26% in the final phase, underscoring its inadequacy for
handling the complexity of medical image classification.
In contrast, ResNet-50 exhibited a more robust learn-
ing capacity, achieving substantial improvement and
reaching 83% accuracy in the final phase, emphasizing
the importance of tuning and adaptation.

The non-pretrained CNN emerged as the most ef-
fective solution, consistently maintaining high levels
of accuracy, nearing 91%, across both training phases
and significantly outperforming the pre-trained models.
This architecture achieved a training accuracy of 92%
and a validation accuracy (val_accuracy) of 91% from
the outset. Its stability across metrics and low valida-
tion loss (val_loss: 0.19 in Phase 2) demonstrated its
capability to capture the necessary patterns for accu-
rate image classification [21]. These results highlight
that a carefully designed, simpler architecture can out-
perform more complex models in terms of efficiency
and accuracy for specific problems.

Class imbalance was identified as a critical fac-
tor, particularly affecting the performance of the pre-
trained ResNet models. The non-pretrained CNN han-
dled this challenge remarkably well, suggesting that
thoughtful architectural design can overcome the struc-
tural limitations of more complex models. While the

non-pretrained CNN successfully managed class imbal-
ance, ResNet-18 and ResNet-50 struggled, particularly
during the early training phases. This emphasizes the
importance of implementing additional strategies, such
as weighted loss functions, data augmentation, or ad-
vanced resampling techniques, to mitigate the impact
of imbalance and enhance the performance of more
complex models. Ensuring high-quality retinography
images [2] is also crucial to avoid inconsistencies during
the training phase.

Future research should focus on advanced strate-
gies to manage class imbalance in medical datasets,
addressing one of the most significant challenges iden-
tified in this study. These efforts should aim to create
methodologies that ensure a more balanced represen-
tation of different image categories, particularly for
minority classes that are critical to diagnosing diabetic
retinopathy.

Proposed strategies include developing advanced
resampling techniques, such as SMOTE, designing cus-
tom loss functions that dynamically weight classes,
and creating data augmentation methods specifically
tailored to medical images. These approaches aim not
only to enhance model accuracy but also to improve
their ability to detect rare yet clinically significant
cases, representing a substantial advancement in the
application of artificial intelligence to medical diagno-
sis.

The relevance of this work lies in its potential to
transform AI systems capabilities for handling com-
plex and imbalanced datasets, particularly in medical
contexts where early and accurate detection is crucial
for effective treatment. This direction offers promis-
ing avenues for improving diagnostic precision and
addressing critical challenges in medical imaging.
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