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Abstract

This paper presents a complete analysis of the casca-
de structure for adaptive transversal filters based on
adaptive algorithms. The standard structure of the
cascade transversal FIR filter is obtained by replacing
the whole structure by small ones with the same impul-
se response but having a less number of taps than the
original structure. Computer simulation result shows
the validity, reliability and the limitations that the
model could have in its capacity of prediction. The
optimal values of the model are compared with those
obtained by the standard least mean square and re-
cursive least square adaptive algorithms in order to
verify the convergence of the weights and determine
how fast this structure achieves those weights. For this
case the speed of the algorithm is determined by the
number of iterations that the filter requires to reach
the minimum square value of its learning curve.

Keywords: Cascade structures, Finite impulse respon-
se filters, Transversal filters, Linear estimation, LMS
algorithm, RLS algorithm.

Resumen

Este artículo presenta un análisis completo de la es-
tructura en cascada para filtros transversales basados
en algoritmos adaptativos. La estructura general de un
filtro transversal FIR en cascada se obtiene reempla-
zando toda la estructura por pequeñas secciones inde-
pendientes de filtros de la misma respuesta al impulso
pero con un número inferior de pesos al original. Los
resultados de la simulación en computadora muestran
la validez, capacidad y las limitaciones que el modelo
podría tener en su capacidad de predicción. Los valores
óptimos del modelo son comparados con aquellos ob-
tenidos por los algoritmos adaptativos convencionales
de mínimo cuadrado medio y mínimo cuadrado medio
recursivo para verificar la convergencia de los pesos y
determinar qué tan rápido la estructura alcanza dichos
pesos. En este caso la rapidez del algoritmo se deter-
mina en base al número de iteraciones que el filtro
requiere para llegar al valor mínimo cuadrado de su
curva de aprendizaje.

Palabras clave: estructura en cascada, filtros de res-
puesta al impulso finita, filtros transversales, estima-
ción lineal, algoritmo LMS, algoritmo RLS.
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1. Introduction
Adaptive systems are commonly used to exploit the
spatial domain in an attempt to enhance coverage and
capacity by minimizing interference in different types
of engineering systems. For example, in an adaptive
beamformer, array shading coefficients are adjusted to
maximize the signal to noise ratio so that the beam
pattern has its nulls in the direction of major noise
sources.

In adaptive predictors and echo cancellers, the coef-
ficients are adjusted to minimize prediction error and
undesired interferences in the mean square sense. The
essential and principal property of these systems is its
time-varying, self-adjusting performance [1].

Over the last sixty years, adaptive systems have
been actively researched. One of the pioneers in de-
veloping adaptive theory was Widrow who used the
concept of adaptive linear combiner together with a set
of adjusted weights to reduce the mean-square error
[1],[2]. Different types of adaptive algorithms, inclu-
ding the Least-Mean-Square (LMS) and Recursive-
Least-Square (RLS), have been developed and applied
to areas such as smart antennas, speech communica-
tions, electrocardiography, and seismic signal proces-
sing. Adaptive noise canceling is in fact applicable to
a wide variety of signal-enhancement situations, be-
cause noise characteristics are not often stationary in
real-world situations [3].

A lot of research about new adaptive structure
filters and algorithms are carried out to enhance their
performance. One of these structures is the cascade
form [4],[5], [6], many applications and analyses have
been developed and accomplished to give a better
understanding of this implementation, for example in
[7] an infinite impulse response (IIR) adaptive filter
algorithm is constructed as a cascade of transversal
structure as well as all pole lattice structure.

The filter structure is adapted using the simple hy-
perstable adaptive recursive filter (SHARF) algorithm
in which the transversal and lattice sections are upda-
ted using the simultaneous perturbation method. This
algorithm preserves the stability of the IIR adaptive
filter during the adaptation with lower computational
complexity and cost than conventional algorithms. In
[8] a general-purpose algorithm was proposed for the
design of linear phase finite impulse response (FIR)
filters in cascade form with discrete coefficients.

This algorithm decomposes the overall filter into
subfilters during the traverse of a tree search of the
overall filter. The optimization complexity is of the
same order as the single-stage filter optimization. In
[9] the use of different high-level filter architectures

(cascade, lattice, and parallel) is analyzed and their
advantages and disadvantages are discussed. This infor-
mation serves as a useful comparative analysis in the
selection of high-level filter architecture for a particular
problem. In this paper we analyze the optimal values
obtained by changing the structure of a transversal
filter by one which is based on cascade structures for
linear prediction problems.

In Section 2, a complete development of the equa-
tions has been made in order to obtain a sufficient
understanding of the structure and its limitations. Sec-
tion 3 describes the equations related to the simplest
cascade structure and how its constrained equations
have relationship with the standard transversal filter.
Section 4 describes the adaptive algorithms that will be
used in this paper for the cascade structure to contrast
the results obtained in the previous section. Results
obtained from computer simulation for two stages and
one tap for stage are presented in Section 5. Finally,
Section 6 concludes the paper.

2. Linear prediction and the
cascade structure

The problem of linear prediction is analogous to that
of finding the whitening filter for a given signal. FIR
adaptive filters are suitable structures for this particu-
lar problem, especially when dealing with only locally
stationary signals. The adaptive filter tries to generate
an estimate of the current input sample for a linear
combination of a determined number of past samples.
Unfortunately, large values of the predictor’s length
increase the eigenvalue spread effects and force the use
of a smaller step size, which implies a slower conver-
gence. A possible way to counteract this problem is to
replace the whitening filter by a series of sequential
refining of the prediction performed by a cascade of
small-order whitening filters [6].

Figure 1 shows the structure of the cascade for
one-step-ahead linear prediction problem. The global
adaptive filter is replaced by one of various sections
and each section is independent among them [1],[5].

Figure 1. Standard structure of the cascade predictor.

The analysis of the cascade structure is developed
by considering the simplest form of the cascade pre-
dictor which is composed of one weight for stage as
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shown in Figure 2 [6],[10]. Regardless of the particu-
lar algorithm governing the adaptation, the following
equation rules its behavior for each stage

x̂k (n) =
M∑

m=1
w

(m)
k x (n−m) (1)

ek (n) = xk (n)− x̂k (n) (2)

By substituting (1) into (2) yields

ek (n) = xk (n)−
M∑

m=1
w

(m)
k x (n−m) (3)

For this particular analysis M = 1 for stage, thus

ek (n) = xk (n)− w(1)
k x (n− 1) (4)

-1Z



-1Z
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e1(n)=X2(n)

X(n)=X1(n)

X1(n-1) X2(n-1)

X1(n) X2(n)
e2(n)

Figure 2. The simplest cascade predictor for two stages
and only one weight for stage.

Equation (4) represents the output of each stage
and at the same time the approximation error, where
xk+1 (n) = ek (n) are the adjustable weights of the
k-th predictor. It is possible to omit superscript in (4)
for this particular case due to there is only one tap for
stage. The stages are connected in cascade so that

xk+1 (n) = ek (n) (5)

In the adaptation process with performance feed-
back, the weight vector is adjusted to cause the output
to agree as closely as possible with the desired sig-
nal. This is accomplished by comparing the output
with the desired response to obtain an error signal
and then adjusting the tap vector to minimize this
error. In most practical instances the adaptive process
is oriented toward minimizing the mean-square value
[1],[3],[11] taking the square and expected value of (4),
we have

e2
k (n) = x2

k (n)− 2wkxk (n)x (n− 1) + . . .

· · ·+ w2
kx

2
k (n− 1) (6)

E
[
e2

k (n)
]

= E
[
x2

k (n)
]
− . . .

. . .−2wkE [xk (n)xk (n− 1)]+w2
kE
[
x2

k (n− 1)
]
(7)

Equation (7) is known as the mean-square error of
the system. Many useful adaptive processes rely on the
weight vector to seek the minimum of the performance
surface by gradient methods. The gradient of the mean-
square-error performance surface is denoted as , which
can be obtained by differentiating the last equation (7)
with respect to the coefficients of each section [2],[3],
[10] thus

∇ =
∂E
[
x2

k (n)
]

∂wk
(8)

∇ = −2Exk (n)xk (n− 1) + 2wkE
[
x2

k (n− 1)
]

(9)

If it is assumed convergence towards the Wiener-
Hopf solution for the single stage, wk → w∗

k; thus

0 = −2E [xk (n)x (n− 1)] + 2w∗
kE
[
x2

k (n− 1)
]

(10)

w∗
k = E [xk (n)xk (n− 1)]

E [x2
k (n− 1)] (11)

The autocorrelation function [11] between two sig-
nals is given by

E [xk (n− p)xk (n− i)] = r (i− p) (12)

Substituting (12) in (11), the optimal value of the
weight for the simplest model can be written as a
function of the autocorrelation, therefore

w∗
k = rk (1)

rk (0) (13)

The next step is to consider (5) in order to develop
the equations for the k + 1 stage and determine its
relationship with the previous stage, therefore the
autocorrelation of the output at the k-th stage can be
expressed as

E [ek (n) ek (n−m)] = E [xk+1 (n)xk+1 (n−m)]
(14)

Assuming convergence of the weight to the optimal
value, the left side of (14) after some straightforward
manipulation can be written as

rk (m)− w∗
krk (m+ 1)− w∗

krk (m− 1) + . . .

· · ·+ (w∗
k)2

rk (m) (15)

Developing a similar manipulation to obtain (15),
the right side of (14) can be written as a function of
the correlation as

E [xk+1 (n)xk+1 (n−m)] = rk+1 (m) (16)
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Therefore, (16) can be expressed as

[
1 + (w∗

k)2
]
rk (m)− w∗

k [rk (m+ 1) + rk (m− 1)]
(17)

In particular for m = 0, from (17) gives

rk+1 (0) =
[
1 + (w∗

k)2
]
rk (0)− w∗

k [rk (1) + rk (−1)]
(18)

But

E [xk (n)xk (n− i)] = E [xk (n− i)xk (n)] (19)

r (i) = r (−i) (20)

By substituting (20) in (18) yields

rk+1 (0) =
[
1 + (w∗

k)2
]
rk (0)− 2w∗

krk (1) (21)

Equation (21) may be expressed by substituting
(13) in it, therefore

rk+1 (0) = rk (0) + r2
k (1)
rk (0) − 2r

2
k (0)
rk (0) (22)

rk+1 (0) = rk (0)− r2
k (1)
rk (0) (23)

The performance of the system depends on whether
or not the mean-square-error has the possibility to
increase as a function of the number of stages; therefore
the MSE is defined as

ψk = E
[
e2

k (n)
]

(24)

ψk = E [ek (n) ek (n)] (25)

ψk = E [xk+1 (n) ek+1 (n)] (26)

ψk = rk+1 (0) (27)

Substituting (23) in (27) yields

ψk = rk (0)− r2
k (1)
rk (0) (28)

If it is supposed ψk = rk+1 (0) then

ψk−1 = rk (0) (29)

Substituting (29) into (28) results in

ψk = ψk−1 −
r2

k (1)
ψk−1

(30)

Therefore,

ψk ≤ ψk−1 (31)
According to (31) the final MSE is not an increasing

function of the number of stages.

3. The simplest two stages
cascade structure

For a two-stage cascade filter exact expressions for the
weights can be derived in an explicit manner. Even
though, this is a very simple application of the Wiener
solution, it can be manageable. For the linear filter
with two taps, (3) is expanded for k = 1, 2; therefore

e1 (n) = x1 (n)− w1x (n− 1) (32)

e2 (n) = x2 (n)− w2x (n− 2) (33)

By (5), the following equation is obtained

x2 (n) = e1 (n) (34)

x2 (n) = x1 (n)− w1x (n− 1) (35)

Substituting (34) into (32) yields

e2 (n) = x1 (n)− w1x (n− 1) + w2x (n− 2) (36)

Taking the Z-transform of (36), and considering
that x1 (n) = x (n) after some straight manipulation

F (z) = E2 (z)
X (Z) = 1− w1z

−1 + w2z
−2 (37)

Considering convergence to the Wiener solution [2]
of this filter, (37) can be expressed as

F ∗ (z) = 1− w∗
1z

−1 + w∗
2z

−2 (38)

From the Wiener solution [1] for a standard trans-
versal filter having two weights, the gradient can be
calculated as

∇ = 2
[
r (0) r (1)
r (1) r (0)

] [
wn1
wn2

]
− 2

[
r (1)
r (2)

]
(39)

In order to obtain the optimal solution, the gra-
dients must be zero, after some straightforward mani-
pulations the optimal weights are expressed as
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w∗
n1 = r (1) [r (0)− r (2)]

r (0)2 − r (1)2 (40)

w∗
n2 = r (0) r (2)− r (1)2

r (0)2 − r (1)2 (41)

According to [7], the cascade weights for this system
can be defined as

w∗
1 = w∗

c1 + w∗
c2 (42)

w∗
2 = −w∗

c1w
∗
c2 (43)

Therefore, (38) can be written as

F ∗ (z) = 1− (w∗
c1 + w∗

c2) z−1 − w∗
c1w

∗
c2z

−2 (44)

From (13), for each stage the optimal weights can
be written as a function of the autocorrelation function
as

w∗
c1 = r1 (1)

r2 (0) (45)

w∗
c1 = r2 (1)

r2 (0) (46)

Substituting (45) into (17) with k = 1 and m = 1,
after some straightforward manipulation

r2 (1) = r1 (1)
[
r2

1 (1)
r2

1 (0) −
r1 (0) r1 (2)
r2

1 (0)

]
(47)

From equation (23), (46) and (47) the optimal
values for the cascade structure can be expressed as

w∗
c2 = r1 (1)

r2 (0)

[
r2

1 (1)
r2

1 (0) −
r1 (0) r1 (2)
r2

1 (0)

]
(48)

w∗
c2 = r1 (1)

r1 (0)

[
r2

1 (1)− r1 (0) r1 (2)
r2

1 (0)

]
(49)

Finally, substituting (45), (49) into (42) and (43)
yields

w∗
1 = r (1) [r (0)− r (2)]

r (0)2 − r (1)2 = w∗
n1 (50)

w∗
2 = r (1)2

r (0)2

[
r (1)2 − r (0) r (2)
r (0)2 − r (1)2

]
= δ2w∗

n2 (51)

According to (50) and (51) the cascade weights
converge to a biased version of the optimal filter [5] ;
in this case the bias affects the second coefficient as a
function of the autocorrelation of the signals.

4. Adaptive algorithms for
learning

In addition to (50) and (51), some adaptive algorithms
have been used to obtain the optimal values for the
cascade form. In this section we describe in simple
form its algorithms.

4.1 LMS algorithm
The optimal weight vector W that solves the minimum-
square error can be updated according to [3],[11].

minω E [d− uω] (52)

ωi = ωi−1 + µx∗
i [d (i)− xiωi−1] (53)

where µ is a positive step-size and d is the desired
signal.

4.2 RLS algorithm
The optimal weight vector W that solves (52) can be
updated according to [3],[11].

Pi = λ−1
[
Pi−1 −

λ−1Pi−1u
∗
1u1Pi−1

1 + λ−1uiPi−1u∗
1

]
(54)

ωi = ωi−1 + Piu
∗
i [d (i)− uiωi−1] (55)

where 0 << λ ≤ 1 and P−1 = ε−1I for some small
positive scalar ε and d is the desired signal.

5. Computer simulations
The ability of the cascade linear predictor to estimate
a signal that has been corrupted by noise is investiga-
ted by means of MATLAB c© simulations. The main
purpose of the simulation is to analyze the behavior of
the biased version of the second weight of the cascade
form and how fast this architecture is. For compa-
rison purposes, results have been obtained for LMS
and RLS algorithms. For the simulation, the following
parameters have been used.

• The random samples of a sinusoidal signal are
independent.

• A random variable r has been defined as r = kv
where k is a constant and v is a normal random
variable with mean zero and variance 1.

• The samples for cycle (N) have been increased
from 8 to 20 by increments of 1.
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• Three different variances of r have been taken:
0.01, 0.04 and 0.09.

For this problem the signal that has been degraded
by noise is defined as

x (n) = sin
(

2πn
N

)
+ rn (56)

According to [1],[6], the correlation matrix and the
cross-correlation vector are defined respectively as

R =
[
r (0) r (1)
r (1) r (0)

]
(57)

P =
[
r (1)
r (2)

]
(58)

Where r(0), r(1) and r(2) are defined as

r (0) = 0,5 + φ (59)

r (n) = 0,5cos
(

2πn
N

)
(60)

After some straight mathematical procedure, the
correlation and cross-correlation (for a variance of r
equals 0.01 and N = 20 ), respectively are

R =
[

0,51 0,4755
0,4755 0,51

]
(61)

P =
[

0,4755
0,4045

]
(62)

The optimal solution given by Widrow [1], is defi-
ned as

W ∗ = R−1P (63)

W ∗ =
[

1,4755
−0,5825

]
(64)

By (50) and (51) the optimal solution for this exam-
ple must be

W ∗
c =

[
1,4755
−0,5064

]
(65)

Figure 3 shows the convergence of the weights for
the cascade system and the adaptive LMS algorithm
used in this paper. For the simulation 8 samples for
cycle have been taken in order to get a bias between
the Wiener solution and the cascade solution. Even
thought the program has been ran for 1250 iterations
only the first 500 iterations have been shown for this
Figure.

Figure 4 shows the convergence of the weights for
the cascade system and the adaptive LMS algorithm,
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Figure 3. Convergence of the weights for the LMS, CLMS
and Wiener solution for 8 samples for cycle and noise
variance of 0.01.
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Figure 4. Convergence of the weights for the LMS, CLMS
and Wiener solution for 20 samples for cycle and noise
variance of 0.01.

but 20 samples for cycle have been taken to get a
different bias between the Wiener solution and the
cascade solution.

Figure 5 shows the convergence of the weights for
the cascade system and the adaptive RLS algorithm.
For the simulation 8 samples for cycle have been taken.
Even thought the program has been ran for 1250 ite-
rations only the first 600 iterations have been shown
for this Figure.

Figure 6 shows the convergence of the weights for
the cascade system and the adaptive RLS algorithm,
but 20 samples for cycle have been taken to get a
different bias between the Wiener solution and the
cascade solution.

Figure 7 shows the behavior of the bias when the
samples for cycle have been increased. As a conse-
quence of this change, the bias shows an exponential
decay.
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Figure 5. Convergence of the weights for the RLS, CRLS
and Wiener solution for 8 samples for cycle and noise
variance of 0.01.
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Figure 6. Convergence of the weights for the RLS, CRLS
and Wiener solution for 20 samples for cycle and noise
variance of 0.01.
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Figure 7. Bias versus the samples for cycle N for CLMS
and CRLS algorithms for a noise variance of r equals to
0.01.

Figure 8 shows the learning curve of each adaptive
algorithm for 8 samples for cycle. For each N, the
algorithms reach the minimum value which is near

zero. Only the first 450 iterations have been shown for
this Figure.

Figures 9 shows the number of iterations required
to reach the optimal weights to minimize the mean-
square error. According to the results, the cascade
LMS is faster than the LMS; however, the cascade
RLS is a little bit slower than the regular RLS.
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Figure 8. The learning curves of the LMS, RLS, CLMS
and CRLS adaptive algorithms for 8 samples for cycle and
noise variance of 0.01.
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Figure 9. Iterations versus Samples for cycle for the LMS,
RLS, CLMS and CRLS adaptive algorithms for 8 samples
for cycle and noise variance of 0.01.

Figure 10 shows the convergence of the weights for
the cascade system and the adaptive LMS algorithm
for a noise variance of 0.04; meanwhile, Figure 11 shows
the convergence of the weights for a noise variance of
0.09.

Figure 12 shows the convergence of the weights for
the cascade system and the adaptive RLS algorithm for
a noise variance of 0.04; meanwhile, Figure 13 shows
the convergence of the weights for a noise variance of
0.09.

Figure 14 shows the changes of the bias of the
second weights for the cascade system when the noise
variance has been increased as well as the samples for
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Figure 10. Convergence of the weights for the LMS, CLMS and Wiener solution for 8 samples for cycle and noise
variance of 0.04.
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Figure 11. Convergence of the weights for the LMS, CLMS
and Wiener solution for 8 samples for cycle and noise
variance of 0.09.

cycle. As a consequence of these changes, the bias is
smaller.
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Figure 12. Convergence of the weights for the RLS, CRLS
and Wiener solution for 8 samples for cycle and noise
variance of 0.04.

6. Conclusions
The Cascade-Least-Mean-Square (CLMS) algorithm
displays the ability to converge to the optimal solution
(Wiener) much faster than the LMS algorithm for the
same equivalent filter. This condition remains, even
though the number of samples for cycle (N) and the va-
riance noise have been changed. On the other hand, the
Cascade-Recursive-Least-Square (CRLS) algorithm is
a little bit slower than the RLS algorithm for the sa-
me changes. That is to say, the cascade form of the
recursive algorithm does not enhance the performance
of the standard RLS filter.

In general, for both algorithms the second weight
converges to a biased version of the direct form filter.
This bias is smaller when the signal has a narrow
spectrum of samples of the frequency. This bias can
be reduced as much as it is possible, but it cannot be
completely eliminated. Another quality of the bias is
referred to its dependence on the variance of the noise.
When the variance of the noise has been increased the
bias is smaller.

The number of iterations required to reach the op-
timal weight is almost the same, even though the noise
variance has been increased. Nevertheless, the noise
effects deteriorate the behavior of the weights towards
the permanent optimum values. This characteristic is
easily noticed for LMS algorithms.

For this type of filters, the weights for each stage
does not have the ability to converge to the optimal
value by itself; the reason is because each stage only
has one tap; however, the final result of the equivalent
cascade form depends on the weight in each stage.
The first weight in the equivalent cascade form is the
addition of the weights for separated; meanwhile, the
second optimal weight is the negative multiplication.
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Figure 13. Convergence of the weights for the RLS, CRLS and Wiener solution for 8 samples for cycle and noise
variance of 0.04.

8 10 12 14 16 18 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Samples for cycle N

V
a
lu
e

Bias vs Samples for cycle N

 

 
Var=0.01
Var=0.04
Var=0.09

Figure 14. Bias versus the samples for cycle (N) for CLMS and CRLS algorithms for noise variance of 0.01, 0.04 and
0.09.

For all adaptive algorithms the mean-square error
has reached the minimum value which means the casca-
de form does not increase this magnitude; even though,
the number of stages could be enlarged.
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