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Abstract Resumen
Substations are key facilities within an electrical sys-
tem, untimely failures tend to cause low quality and
negative effects on the electrical supply. An early in-
dicator of potential electrical equipment failure is the
appearance of hot spots; therefore, its detection and
subsequent programmed correction avoids incurring
in major failures and unnecessary operation stops. In
this research, 64 experiments of the YOLOv5 algo-
rithm were carried out, with the purpose of proposing
an automated computer vision mechanism for the de-
tection of hot spots in thermal images of electrical
substations. The best results show a mAP value of
81.99 %, which were obtained with the YOLOv5m al-
gorithm and the transfer learning application. These
results leave a basis to deepen and improve the per-
formance of the algorithm by varying other hyperpa-
rameters to those considered in this study.

Las subestaciones son instalaciones clave dentro de
un sistema eléctrico; las fallas intempestivas tienden a
causar baja calidad y efectos negativos del suministro
eléctrico. Un indicador temprano de posibles fallas
en los equipos eléctricos es la aparición de puntos
calientes; por lo que su detección y posterior correc-
ción programada evita incurrir en fallas mayores y
paradas de operación innecesarias. En esta investi-
gación se realizaron 64 experimentos del algoritmo
YOLOv5, con la finalidad de proponer un mecan-
ismo automatizado de visión por computadora para
la detección de puntos calientes en imágenes térmicas
de subestaciones eléctricas. Los mejores resultados
muestran un valor mAP de 81,99 %, los cuales se
obtuvieron con el algoritmo YOLOv5m y la apli-
cación de transfer learning. Estos resultados dejan
una base para profundizar y mejorar el desempeño
del algoritmo, variando otros hiperparámetros a los
considerados en el presente estudio.
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1. Introduction

Electric substations are facilities composed of equip-
ment necessary for voltage, frequency, phase quantity
transformations, or circuit connections. This type of
equipment is often situated near power generation
plants or in non-urban areas [1, 2]. Ensuring the ade-
quate quality of the electrical supply mandates that
these pieces of equipment remain operational for most
of their lifespan [3, 4]. It is customary for faults in
electric substations to be anticipated by the emergence
of what specialists refer to as hotspots. These elements
exhibit a temperature above their regular operation
compared to other equipment with similar characteris-
tics and operating conditions [5].

Hotspots usually arise due to an increase in elec-
trical resistance in a circuit, resulting from various
factors such as dirt, false contacts, overcurrents, load
imbalances, and insulation loss, among others. These
hotspots are not visible to the naked eye, so their de-
tection requires specialized techniques such as infrared
thermography. However, the analysis must be carried
out manually by an expert or specialist in the field,
involving a significant time investment and the risk of
human errors in the diagnosis [6].

This non-invasive technique is employed for measur-
ing the temperature of various objects without the need
for direct physical contact. To perform this measure-
ment, the infrared radiation from the electromagnetic
spectrum is captured using thermal cameras, which
generate images in the infrared spectrum [7].

Artificial Intelligence (AI) is a discipline that has
had a significant technological impact in recent years
and is being applied in various sectors, including the
electrical field [8]. The combination of thermography
and AI techniques encompasses a wide range of appli-
cations, such as predictive maintenance in industrial
environments, assessment of built structures, identifi-
cation of energy losses, detection of thermal bridges,
location of gas emissions, identification of areas with
elevated temperatures, medical research, weather fore-
casting, military applications, among others [9].

Object detection is a crucial aspect of artificial in-
telligence and computer vision, aiming to identify one
or multiple objects in images or videos. Within the do-
main of object detection, algorithms are broadly cate-
gorized into two primary groups: (i) Manual extraction
(handcrafted features) and (ii) Automatic extraction
(based on deep learning). The latter category is sub-
divided into one-stage and two-stage object detection
algorithms, with the former achieving detections in
less time (See Figure 1) [10].

Figure 1. Object detection algorithms [11]

YOLO, an acronym for "You Only Look Once,"
stands out as a prominent object detection algorithm,
particularly notable for its real-time detection and
recognition of multiple objects. In contrast to alter-
native algorithms like SSD or Faster R-CNN, YOLO
approaches detection as a regression problem, deliver-
ing probabilities linked to each identified class within a
single algorithmic execution. The distinctive strengths
of YOLO encompass its (i) rapid processing speed,
facilitating real-time detection; (ii) exceptional accu-
racy attributed to a notably low error rate; and (iii)
noteworthy learning capacity [12].

YOLOv5, the fifth iteration of the YOLO algo-
rithm, is presented as a one-stage object detector,
emerging as one of the most viable options for real-
time object detection (FPS) [13]. Figure 2 illustrates
the architecture of YOLOv5, unveiling the algorithm’s
custom layers, predominantly composed of convolu-
tions and max-pooling. Additionally, the pseudocode
for YOLOv5 is provided in Figure 3.

Mathematically (see equation (1)), the model pre-
dicts the coordinates bx, bx, bw, bh of bounding boxes
and the confidence C, indicating the presence of an ob-
ject in each cell of an SxS grid. Each cell is responsible
for detecting the objects within it. These predictions
are derived by applying a sigmoid function (σ) to the
output of a neural network, where W represents the
neural network’s weights, f(x) is the input, and b is
the bias. The model generates these predictions for B
boxes, enabling it to detect multiple objects in a sin-
gle pass, rendering it efficient for real-time detection.
YOLOv5 primarily incorporates three techniques: (i)
the use of residual blocks, (ii) bounding box regression,
and (iii) intersection over union (IOU) [14]. Figure 4
illustrates the results of the combination of these three
techniques.

B · (bx, by, bw, bn, C) = σ(W · f(x) + b) (1)
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Figure 2. Architecture of YOLOv5 [15]

Figure 3. Pseudocode - YOLOv5 [15]

Figure 4. YOLOv5 – Combination of techniques [14]

Here is a compilation of prior research and studies
related to this topic.

To ensure the integrity of electrical power systems,
an investigation was carried out employing a convo-
lutional neural network (CNN) based on the YOLO
object detection algorithm. Predictions were made
concerning the coordinates, orientation angle, and clas-
sification of each equipment component. Experimental
results suggest that this approach is resilient to noise,
attaining an accuracy level of 93.7% by using a graphics
processing unit (GPU) during the training phase [16].

Power equipment is a crucial energy system com-
ponent, constituting the focal point of operation and
maintenance. According to Li [17], infrared anomaly
detection technology is an effective method for identi-
fying faults in electrical equipment due to its safety,
simplicity, and intuitiveness. The implementation of
YOLOv3 was proposed using a set of infrared images
collected in the field, achieving an mAP (Mean Aver-
age Precision) value of 34.63% and a recovery rate of
21%.

Greco et al. [18] point out that faults commonly
appear as hotspots on the surface of photovoltaic pan-
els. Consequently, they conducted an investigation
focused on hotspot detection using YOLO. The study
demonstrated that this algorithm can segment panels
in an image efficiently. A quantitative evaluation was
carried out, including a comparison with previously
established approaches for photovoltaic panel detec-
tion. The experimental results obtained affirmed the
robustness and effectiveness of YOLO.

The use of CNN demands high computational and
memory capacity. Nguyen et al. [19] proposed an ob-
ject detection method based on a CNN and YOLO,
considering the PASCAL VOC labeling format. The
model achieved an mAP value of 64.16%.

A comparative study of three object detection al-
gorithms in images [12] revealed that (i) Single Shot
Detector or SSD [20] performs poorly in detecting
small objects compared to Faster R-CNN. SSD has
the disadvantage of requiring an extensive dataset and
data augmentation techniques for training, which is
computationally expensive and increases the execution
time. (ii) Faster R-CNN [21] is more accurate, but
its algorithmic complexity involves a prolonged train-
ing time. Additionally, Faster R-CNN is considerably
slower than YOLO and requires analyzing each image
multiple times, unlike YOLO. Finally, (iii) YOLO [22]
stands out for its optimized and efficient model com-
pared to SSD and Faster R-CNN. The latest versions
of the algorithm offer low latency and improvements
in training and execution time. YOLO also allows real-
time operation and better accuracy, especially when
employing transfer learning techniques [23].

Regarding traditional object detection techniques,
some of the most commonly used include K-means
clustering, support vector machines, fuzzy systems,
and Histograms of Oriented Gradients (HOG), among
others [24], which have demonstrated precision levels
exceeding 80%. However, the primary purpose of this
article is not to delve into traditional techniques but to
provide alternatives based on modern and specific al-
gorithms for object detection, such as YOLOv5. Never-
theless, Table 1 (compiled from [24–26]) presents a com-
parison between traditional techniques and YOLOv5,
highlighting the superiority of YOLOv5 in key aspects
for object detection.
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Table 1. Comparison between YOLOv5 and traditional techniques

Characteristic Traditional techniques YOLOv5
Precision Variable and dependent on the quality of manual

features or specific parameters.
High precision, especially in real-time detection of multiple
objects of different sizes.

Handling object overlap Challenges may arise when dealing with object over-
lap.

Effective handling of object overlap due to its ability to predict
multiple bounding boxes.

Adaptability to different object
sizes

Manual adjustments are required to adapt to dif-
ferent object sizes.

Scalable and can adapt to objects of different sizes.

Generalization capacity Lower generalization capacity to new situations
without manual adjustments.

Ability to generalize patterns and features automatically in
different scenarios.

End-to-End training The training process is more complex, involving
multiple stages and adjustments.

End-to-end training facilitates implementation and reduces
the need for manual intermediate stages.

Real-time performance Variable performance. It can be slow, depending on
the technique and the number of manual features.

Designed explicitly for achieving real-time detection, making
it efficient for practical applications.

Handling large datasets Some traditional techniques may have limitations
when handling large datasets.

Efficient handling of large datasets, leveraging the GPU’s
capability to accelerate operations.

It is worth mentioning that YOLO has various ap-
plications; however, according to the literature analysis,
these techniques have not been employed to identify
hotspots in thermal images of electrical substations,
representing an innovative approach. Therefore, this
study is a continuation of an investigation previously
published by the authors in this prestigious journal [27].
The aim is to examine the performance of four versions
of the YOLOv5 algorithm by conducting 64 experi-
ments applied to hotspot detection. To achieve this, a
set of thermal images from electrical substations cap-
tured by an energy distribution company in northern
Peru is employed.

The paper begins with a detailed description of
the algorithm and the methodology employed. Subse-
quently, the results are presented, and the correspond-
ing conclusions are outlined.

2. Materials and methods

The research began with capturing thermal im-
ages, followed by the labeling process, preprocessing
procedures, and dataset division. Subsequently, the
pre-trained weights of YOLOv5 versions YOLOv5s
(small), YOLOv5m (medium), YOLOv5l (large), and
YOLOv5x (extra-large) were obtained. After this, 64
experiments were conducted and evaluated using vari-
ous metrics. Figure 5 illustrates the implementation
process. The details of the process are outlined in the
subsequent sections.

2.1. Field data collection

The methodology began with the collection of field
data through thermal image capture. To facilitate
this procedure, the TP8S infrared camera was em-
ployed, characterized by a spectral range of 8-14 µm,
an FPA detector (384x288 pixels, 35 µm), a 22°×16°/35
mm field of view, automatic electronic focus,
thermal sensitivity ranging from 0.08 °C a 130 °C,
and a continuous zoom capability from ×1 to ×10.

Figure 5. Steps for the implementation of YOLOv5.

Figure 6. Electromagnetic spectrum of an electrical sub-
station
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The data source employed in this study consists of
815 thermographic images acquired by professionals
from an entity dedicated to the distribution of elec-
trical energy in the northern region of Peru. Figure 6
illustrates an example of generating a thermographic
image of an electrical substation by capturing radiation
in the electromagnetic spectrum.

These images displayed a 384 × 288 pixels resolu-
tion and were classified into two main classes: electrical
lines and electrical substations (See Table 2).

Table 2. Distribution of the original dataset

Classes Total
Line 342

Substation 473

2.2. Dataset labeling

This dataset was labeled by a specialist in hotspot de-
tection within thermographic images using the Guide
IrAnalyser and LabelImg tools. Each identified hotspot
was linked to a corresponding text file for the un-
derlying image, documenting the object class and its
coordinates in a specific format: [category number] [X-
coordinate of the object’s center] [Y-coordinate of the
object’s center] [object width in X direction] [object
width in Y direction]. Figure 7 illustrates the format
employed to represent two hotspots. This format is
reiterated in each row according to the number of
identified and labeled hotspots.

Figure 7. Text file – 2 hotspots

2.3. Preprocessing and dataset splitting

During the image preprocessing stage, histogram nor-
malization was performed to adjust the pixel intensity
distribution in each thermal image, thereby enhancing
its inherent characteristics.

At the outset, 815 images were available, compris-
ing 342 images of power lines and 473 of electrical
substations, as outlined in Table 2. Nevertheless, after
labeling images with hotspots, the number of images
was reduced to 138. Out of these, 116 pertained to sub-
stations and 22 to power lines. Consequently, this study
was exclusively dedicated to the analysis of electrical
substations.

Subsequently, the images were uploaded to the
Roboflow platform, and using the "hold-out" splitting

technique, three datasets were generated: (i) a set of 81
images designated for training, (ii) a set of 23 images
for validation, and (iii) a set of 12 images for testing.

Data augmentation techniques were implemented
to increase the number of images and enhance training
effectiveness, incorporating transformations such as
horizontal inversion, vertical inversion, rotation, shear-
ing, and cropping. This led to an expanded dataset
comprising 278 images: (i) 243 images for training, (ii)
23 for validation, and (iii) 12 for testing.

Andrew Yan-Tak Ng, director of the Artificial In-
telligence Laboratory at Stanford University, states
the following in an article published in Spectrum, a
journal edited by IEEE: “In various industries, having
millions of data to train artificial intelligence models is
challenging; therefore, having a small quantity of truly
good or high-quality images can be useful for build-
ing defect inspection systems. In addition, accuracy
increases when working with the weights of pre-trained
models” [28].

2.4. Download of pre-trained weights

The pre-trained weights of the four algorithms belong-
ing to YOLOv5 were downloaded to enhance the so-
lution’s performance. These pre-trained weights were
applied to the convolutional layers of the detector,
significantly contributing to increased accuracy per-
centages and reduced training process durations. Table
3 provides detailed information about the pre-training
weights associated with each algorithm and the num-
ber of parameters contained in each algorithm. It is
noteworthy that YOLOv5s stands out as the least
complex algorithm, whereas YOLOv5x is the most
sophisticated regarding parameters and complexity.

Table 3. Weight and parameters of each algorithm

Algorithm
Trained weights Parameters

(MB) (millions)
YOLOv5s 14.1 7.2
YOLOv5m 40.8 21.2
YOLOv5l 89.3 46.5
YOLOv5x 166 86.7

2.5. Model training

A total of 64 experiments were conducted on the
Google Colaboratory (Colab) platform, as detailed
in Table 4. The free version of Colab provides an Intel
Xeon processor with 2.30 GHz, an NVIDIA Tesla K80
GPU accelerator, 13 GB of RAM, and 40 GB of disk
space.
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Table 4. Weight and parameters of each algorithm

Exp. Algorithm Batch size Data aug-
mentation

Transfer
learning

E1 YOLOv5s 4 No No
E2 YOLOv5s 8 No No
E3 YOLOv5s 16 No No
E4 YOLOv5s 32 No No
E5 YOLOv5s 4 No Sí
E6 YOLOv5s 8 No Sí
E7 YOLOv5s 16 No Sí
E8 YOLOv5s 32 No Sí
E9 YOLOv5s 4 Sí No
E10 YOLOv5s 8 Sí No
E11 YOLOv5s 16 Sí No
E12 YOLOv5s 32 Sí No
E13 YOLOv5s 4 Sí Sí
E14 YOLOv5s 8 Sí Sí
E15 YOLOv5s 16 Sí Sí
E16 YOLOv5s 32 Sí Sí
E17 YOLOv5m 4 No No
E18 YOLOv5m 8 No No
E19 YOLOv5m 16 No No
E20 YOLOv5m 32 No No
E21 YOLOv5m 4 No Sí
E22 YOLOv5m 8 No Sí
E23 YOLOv5m 16 No Sí
E24 YOLOv5m 32 No Sí
E25 YOLOv5m 4 Sí No
E26 YOLOv5m 8 Sí No
E27 YOLOv5m 16 Sí No
E28 YOLOv5m 32 Sí No
E29 YOLOv5m 4 Sí Sí
E30 YOLOv5m 8 Sí Sí
E31 YOLOv5m 16 Sí Sí
E32 YOLOv5m 32 Sí Sí
E33 YOLOv5l 4 No No
E34 YOLOv5l 8 No No
E35 YOLOv5l 16 No No
E36 YOLOv5l 32 No No
E37 YOLOv5l 4 No Sí
E38 YOLOv5l 8 No Sí
E39 YOLOv5l 16 No Sí
E40 YOLOv5l 32 No Sí
E41 YOLOv5l 4 Sí No
E42 YOLOv5l 8 Sí No
E43 YOLOv5l 16 Sí No
E44 YOLOv5l 32 Sí No
E45 YOLOv5l 4 Sí Sí
E46 YOLOv5l 8 Sí Sí
E47 YOLOv5l 16 Sí Sí
E48 YOLOv5l 32 Sí Sí
E49 YOLOv5xl 4 No No
E50 YOLOv5xl 8 No No
E51 YOLOv5xl 16 No No
E52 YOLOv5xl 32 No No
E53 YOLOv5xl 4 No Sí
E54 YOLOv5xl 8 No Sí
E55 YOLOv5xl 16 No Sí
E56 YOLOv5xl 32 No Sí
E57 YOLOv5xl 4 Sí No
E58 YOLOv5xl 8 Sí No
E59 YOLOv5xl 16 Sí No
E60 YOLOv5xl 32 Sí No
E61 YOLOv5xl 4 Sí Sí
E62 YOLOv5xl 8 Sí Sí
E63 YOLOv5xl 16 Sí Sí
E64 YOLOv5xl 32 Sí Sí

The hyperparameters used included a learning rate
of 0.01, a momentum of 0.937, a weight decay of 0.0005,
200 epochs, 4 batch sizes, and the SGD optimizer.

To prevent model overfitting, the "Scaled weight de-

cay" regularization and the "Early stopping" technique
were incorporated and configured with a patience of
100, meaning the model will halt training if no improve-
ments are observed in the last 100 epochs. Additionally,
the weights from the best epochs are stored in each
run, and the results of the mAP, Precision, Recall,
and Loss curves are analyzed. Figure 8 illustrates the
training flow of YOLOv5.

Figure 8. YOLOv5 training flowchart

2.6. Analysis of results

After the training of each model, analyses of metrics
such as Precision (2), Recall (3), F1-score (4), loss rate,
and mAP (5) were conducted, the latter being calcu-
lated based on Average Precision (6). TP represents
the set of true positives, FP false positives, FN false
negatives, and N the number of classes.

Several studies indicate that metrics such as F1-
score and mAP (Mean Average Precision) are appro-
priate for model comparison [12], [29].

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

F1SCORE = 2 ∗ precision ∗ recall

precision + recall
(4)
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mAP = 1
n

k=n∑
k=1

APk (5)

AP =
k=n−1∑

k=0

[Recalls(k) − Recalls(k + 1) ∗ P recisions(k)]

(6)

3. Results and Discussion

Below, the results obtained by each of the four versions
of YOLOv5 are presented.

3.1. YOLOv5s

YOLOv5 small achieved better results (mAP = 69.42%
and F1-score = 68.23%) when training the model with
experiment 5, i.e., with a batch size of 8, 171 epochs,
applying transfer learning, and without incorporating
data augmentation (See Table 5).

Table 5. YOLOv5 small – Training Results

Exp. Precision Recall F1-score mAP
E1 47.16 % 67.57 % 55.55 % 50.26 %
E2 75.97 % 51.35 % 61.28 % 59.77 %
E3 59.97 % 64.86 % 62.32 % 65.08 %
E4 55.95 % 75.68 % 64.34 % 64.70 %
E5 60.40 % 78.38 % 68.23 % 69.42 %
E6 59.17 % 78.33 % 67.42 % 65.44 %
E7 79.98 % 53.99 % 64.47 % 68.99 %
E8 57.57 % 70.27 % 63.29 % 57.24 %
E9 80.00 % 54.05 % 64.51 % 64.65 %
E10 57.43 % 72.97 % 64.27 % 64.96 %
E11 56.39 % 59.46 % 57.89 % 53.07 %
E12 55.26 % 56.76 % 56.00 % 52.85 %
E13 67.72 % 56.70 % 61.72 % 56.30 %
E14 57.12 % 64.80 % 60.72 % 59.94 %
E15 58.31 % 75.68 % 65.87 % 58.82 %
E16 58.47 % 64.86 % 61.50 % 60.52 %

3.2. YOLOv5m

YOLOv5 medium achieved better results than
YOLOv5s (mAP = 81.99% and F1-score = 78.57%)
when training the model with experiment 22, i.e., with
a batch size of 16, 139 epochs, applying transfer learn-
ing, and without incorporating data augmentation (See
Table 6).

Table 6. YOLOv5 medium – Training Results

Exp. Precision Recall F1-score mAP
E17 59.01 % 70.27 % 64.15 % 50.26 %
E18 86.13 % 51.35 % 64.34 % 59.77 %
E19 70.27 % 70.26 % 70.27 % 65.08 %
E20 65.71 % 62.16 % 63.89 % 64.70 %
E21 70.72 % 78.38 % 74.35 % 69.42 %
E22 70.21 % 89.18 % 78.57 % 65.44 %
E23 74.34 % 78.31 % 76.28 % 68.99 %
E24 74.28 % 70.24 % 72.20 % 57.24 %
E25 84.05 % 45.95 % 59.41 % 64.65 %
E26 88.62 % 43.24 % 58.12 % 64.96 %
E27 58.95 % 62.16 % 60.51 % 53.07 %
E28 49.97 % 75.68 % 60.19 % 52.85 %
E29 91.60 % 59.46 % 72.11 % 56.30 %
E30 64.82 % 64.86 % 64.84 % 59.94 %
E31 69.42 % 67.50 % 68.45 % 58.82 %
E32 81.42 % 59.46 % 68.73 % 60.52 %

3.3. YOLOv5l

YOLOv5 large achieved results similar to YOLOv5m
(mAP = 81.88% and F1-score = 80.51%) when train-
ing the model with experiment 37, i.e., with a batch
size of 8, 180 epochs, applying transfer learning, and
without incorporating data augmentation (See Table
7).

Table 7. YOLOv5 large – resultados del entrenamiento

Exp. Precision Recall F1-score mAP
E33 80.70 % 45.95 % 58.55 % 55.38 %
E34 60.97 % 67.57 % 64.10 % 62.77 %
E35 55.97 % 75.68 % 64.35 % 68.42 %
E36 61.86 % 70.13 % 65.74 % 63.07 %
E37 89.79 % 72.97 % 80.51 % 81.88 %
E38 73.80 % 83.78 % 78.48 % 79.98 %
E39 68.11 % 81.08 % 74.03 % 78.10 %
E40 89.18 % 67.57 % 76.88 % 80.56 %
E41 57.14 % 64.86 % 60.76 % 61.48 %
E42 73.04 % 51.27 % 60.25 % 59.81 %
E43 52.99 % 70.27 % 60.42 % 63.03 %
E44 49.12 % 75.65 % 59.56 % 65.17 %
E45 73.53 % 67.56 % 70.42 % 71.16 %
E46 80.47 % 78.38 % 79.41 % 77.68 %
E47 82.20 % 64.86 % 72.51 % 71.97 %
E48 69.22 % 72.95 % 71.04 % 70.16 %

3.4. YOLOv5xl

YOLOv5 extra-large achieved slightly lower results
than YOLOv5m and YOLOv5l (mAP = 79.25% and
F1-score = 76.92%) when training the model with ex-
periment 56, i.e., with a batch size of 32, 178 epochs,
applying transfer learning, and without incorporating
data augmentation (See Table 8). This was the only
case where the best results were achieved with a batch
size that was relatively larger compared to the other
three algorithms.
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Table 8. YOLOv5 extra-large – Training Results

Exp. Precision Recall F1-score mAP
E49 51.32 % 51.28 % 51.30 % 55.38 %
E50 53.29 % 64.86 % 58.51 % 62.77 %
E51 62.42 % 67.57 % 64.89 % 68.42 %
E52 67.51 % 67.57 % 67.54 % 63.07 %
E53 77.04 % 72.56 % 74.73 % 81.88 %
E54 72.09 % 83.70 % 77.46 % 79.98 %
E55 69.76 % 81.06 % 74.99 % 78.10 %
E56 73.17 % 81.08 % 76.92 % 80.56 %
E57 57.12 % 64.86 % 60.74 % 61.48 %
E58 49.99 % 64.86 % 56.47 % 59.81 %
E59 56.51 % 70.27 % 62.64 % 63.03 %
E60 77.26 % 45.91 % 57.59 % 65.17 %
E61 70.96 % 59.45 % 64.70 % 71.16 %
E62 76.66 % 62.16 % 68.65 % 77.68 %
E63 71.42 % 81.03 % 75.92 % 71.97 %
E64 73.78 % 83.78 % 78.46 % 70.16 %

3.5. YOLOv5 – Best results

A ranking of the 64 experiments was generated, con-
sidering the Mean Average Precision (mAP) as the
classification factor (See Table 9).

Table 9. Details of the conducted experiments

Exp. Ranking Loss mAP Mejor
época

E1 63 0.05484 50.26 % 157
E2 52 0.05137 59.77 % 153
E3 31 0.04212 65.08 % 167
E4 34 0.04340 64.70 % 143
E5 22 0.04060 69.42 % 171
E6 29 0.03988 65.44 % 190
E7 23 0.04106 68.99 % 146
E8 56 0.04953 57.24 % 193
E9 35 0.04657 64.65 % 115
E10 32 0.03710 64.96 % 168
E11 61 0.03740 53.07 % 134
E12 62 0.03750 52.85 % 185
E13 57 0.03718 56.30 % 76
E14 50 0.03360 59.94 % 74
E15 54 0.02952 58.82 % 127
E16 49 0.03107 60.52 % 200
E17 44 0.05050 62.57 % 160
E18 25 0.05133 68.49 % 139
E19 33 0.04590 64.73 % 194
E20 60 0.05628 53.40 % 175
E21 17 0.04042 72.87 % 107
E22 1 0.04541 81.99 % 139
E23 12 0.04426 75.69 % 182
E24 11 0.04362 75.97 % 154
E25 45 0.05280 61.87 % 86
E26 46 0.04952 61.65 % 86
E27 42 0.05051 62.80 % 88
E28 39 0.04908 63.09 % 63
E29 16 0.05071 73.20 % 108
E30 28 0.04914 66.17 % 69
E31 27 0.04743 68.35 % 37
E32 20 0.04665 70.96 % 63
E33 58 0.05487 55.38 % 154
E34 43 0.04841 62.77 % 153
E35 26 0.04331 68.42 % 182
E36 40 0.03910 63.07 % 123
E37 2 0.01974 81.88 % 180
E38 4 0.01602 79.98 % 128
E39 7 0.01615 78.10 % 125
E40 3 0.01396 80.56 % 160
E41 47 0.04325 61.48 % 136
E42 51 0.03757 59.81 % 162
E43 41 0.03571 63.03 % 60

Exp. Ranking Loss mAP Mejor
época

E44 30 0.03288 65.17 % 126
E45 19 0.01628 71.16 % 182
E46 8 0.01431 77.68 % 124
E47 18 0.01702 71.97 % 43
E48 21 0.01196 70.16 % 165
E49 64 0.06242 44.01 % 184
E50 53 0.04919 58.92 % 198
E51 37 0.04517 63.48 % 198
E52 14 0.04052 74.29 % 196
E53 9 0.02470 77.62 % 50
E54 6 0.01478 78.78 % 178
E55 13 0.01468 75.57 % 87
E56 5 0.01247 79.25 % 178
E57 48 0.04357 61.42 % 101
E58 59 0.04474 54.13 % 181
E59 36 0.03493 64.20 % 156
E60 55 0.03677 58.66 % 98
E61 38 0.01463 63.36 % 165
E62 24 0.01390 68.92 % 89
E63 15 0.01015 73.42 % 109
E64 10 0.01134 77.01 % 92

The most outstanding results for each algorithm
are documented in Table 10 and presented graphically
in Figure 9 (mAP), Figure 10 (precision), Figure 11
(recall), Figure 12 (training loss rate) and Figure 13
(validation loss rate). In the four evaluated scenarios,
it is observed that the most remarkable performance
was achieved by employing transfer learning without
incorporating data augmentation.

From the 64 experiments conducted, the most
outstanding model was developed by employing
YOLOv5m and training it for 139 epochs, with a batch
size of 8, without incorporating data augmentation and
applying the transfer learning technique.

Table 10. Top performances for each algorithm

Algorithm Experiment mAP Best epoch Ranking
YOLOv5s E5 69.42 % 171 22
YOLOv5m E22 81.99 % 139 1
YOLOv5l E37 81.88 % 180 2
YOLOv5xl E56 79.25 % 178 5

Figure 9. YOLOv5 – Best results: mAP – Model training
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Figure 10. YOLOv5 – Best results: Precision – Model
training

Figure 11. YOLOv5 – Best results: Recall – Model train-
ing

Figure 12. YOLOv5 – Best results: Loss rate – Model
training

Figure 13. YOLOv5 – Best results: Loss rate – Model
validation

Figure 14 illustrates the graphical representation
of the proposal derived from this research. The first
step in the process is to incorporate the thermographic
image database; then, the model is trained using the
YOLOv5m algorithm, and finally, hotspots are de-
tected in images of electrical substations.

Figure 15 displays various predictions made by
the model, along with their respective percentages.
These results were obtained using images from the
test dataset, which were not previously included in the
training and validation phases of the model.

Figure 14. Proposed model

Figure 15. YOLOv5 medium – Hotspot detection
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4. Conclusions

The primary aim of this study was to delve into innova-
tive perspectives diverging from conventional artificial
intelligence techniques. Special attention was directed
towards the YOLOv5 object detection algorithm, ac-
knowledging its remarkable efficiency in training pro-
cesses.

Four iterations of the YOLOv5 algorithm under-
went evaluation across 64 experiments, trained with
a dataset of thermal images sourced from electrical
substations. The findings reveal a discernible trend
towards enhanced precision with an escalation in the
number of training epochs, coupled with exploring al-
ternative values beyond those employed in this study,
encompassing optimizers, hyperparameters, and oth-
ers.

Integrating data augmentation techniques has a
negative impact on the precision of the models across
all evaluated scenarios. Conversely, the transfer learn-
ing strategy, incorporating pre-trained weights for con-
volutional layers, enhances performance. Regarding
the batch size, optimal results were attained within
the range of 4 to 32, justified by the inherent size
constraints of the current dataset. Nevertheless, it is
crucial to note that this parameter may vary in future
research involving more extensive datasets of thermo-
graphic images.

Scaled weight decay and Early stopping techniques
were crucial in preventing overfitting. In this context,
early termination of training was implemented when
there was no improvement in performance over a spe-
cific number of epochs.

The findings of this research establish a valuable
foundation for future investigations exploring the ap-
plication of similar algorithms in the domain of hotspot
detection in the electrical sector. As a recommenda-
tion for subsequent studies, it is advised to consider
incorporating models with additional variants of the
YOLOv5 algorithm, such as YOLOv5n6, YOLOv5s6,
YOLOv5m6, YOLOv5l6, YOLOv5x6, or exploring al-
ternative approaches like R-CNN and Faster R-CNN,
among others. Based on the outcomes of this study,
it could be anticipated that these explorations could
result in enhanced performance.

Ultimately, exploring the possibility of integrating
the developed model into a thermographic camera is
highly recommended, thus facilitating real-time alert
generation during image capture in the field.
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