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Abstract Resumen
The use of photovoltaic solar plants for the generation
of electrical energy has been constantly increasing in
recent years, and many of these plants are connected
to the external electrical network, which makes it
necessary to forecast the electrical energy generated
by the solar plants to assist in the management of the
network operator. This research presents a method-
ology based on data science to develop the forecast
of electrical energy generated from photovoltaic solar
plants, using three different techniques for comparison
purposes: time series analysis, multiple linear regres-
sion, and artificial neural network. Historical data of
peak power, solar irradiance, ambient temperature,
wind speed, and soiling rate from an experimental
NREL photovoltaic solar plant were used. To evalu-
ate the performance of the models, the RMSE, MAE,
and MAPE metrics are used, resulting in the ARIMA
model of the time series analysis having the best per-
formance with a MAE of 1.38 kWh, RMSE of 1.40
kWh, and MAPE of 6.35%. In the correlation anal-
ysis, it was determined that power generation was
independent of the soiling rate, so this variable was
discarded in the regression models.

El uso de plantas solares fotovoltaicas para la genera-
ción de energía eléctrica ha ido en constante aumento
en los últimos años. Muchas de estas se conectan a
la red eléctrica externa, por lo que se hace necesario
el pronóstico de la energía eléctrica generada por las
plantas solares para coadyuvar en la gestión del ope-
rador de la red. En esta investigación se presenta una
metodología basada en la ciencia de datos para desa-
rrollar el pronóstico de energía eléctrica generada de
plantas solares fotovoltaicas, utilizando, para efectos
de comparación, tres técnicas diferentes: análisis de
series de tiempo, regresión lineal múltiple, y red neu-
ronal artificial. Se trabajó con los datos históricos de
la potencia pico, la irradiancia solar, la temperatura
ambiente, la velocidad del viento, y la tasa de su-
ciedad, de una planta solar fotovoltaica experimental
del NREL. Para evaluar el desempeño de los modelos
se utilizan las métricas RMSE, MAE, y MAPE, re-
sultando que el modelo ARIMA del análisis de series
de tiempo fue el que mejor desempeño tuvo con un
MAE de 1.38 kWh, RMSE de 1.40 kWh, y MAPE de
6.35%. En el análisis de correlación se determinó que
la generación de energía era independiente de la tasa
de suciedad, por lo que se descartó esta variable en
los modelos de regresión.

Keywords: Machine learning, solar irradiance, arti-
ficial neural network, linear regression, time series,
ambient temperature.

Palabras clave: aprendizaje automático, irradiancia
solar, red neuronal artificial, regresión lineal, serie de
tiempo, temperatura ambiente

19

https://doi.org/10.17163/ings.n30.2023.02
https://orcid.org/0000-0002-3813-7606
cyajure@gmail.com
https://doi.org/10.17163/ings.n30.2023.02


20 INGENIUS N.◦ 30, july-december of 2023

1. Introduction

The use of renewable energy sources for electricity pro-
duction has increased in recent years due to public poli-
cies in some countries aimed at reducing environmental
pollution caused by fossil fuel sources and bringing elec-
tricity to remote places where the traditional power
grid does not reach. According to the 2022 Global
Renewable Energy Status Report, in 2011, 20.4% of
electricity came from renewable sources, mainly hy-
dro, solar, wind, bioenergy, and geothermal. In 2021
this percentage increased to 28.3% (15% hydro, 10%
solar and wind, and 3% bioenergy and geothermal).
As for solar photovoltaic energy, in 2021, there were
942 GW of installed capacity for electricity generation
worldwide, showing an increase of 23% compared to
2020 [1].

The use of solar energy for electricity production
has been evolving technologically, so the use of solar
photovoltaic plants connected to the external power
grid has been increasing, reporting an increase of 20%
worldwide by 2021 [1]. The energy coming from solar
photovoltaic plants is subject to climatic variations,
specifically solar irradiance, and temperature. To con-
tribute to the stability and reliability of the electrical
system, it is necessary to develop forecasts of the en-
ergy generated considering the historical data of these
climatic variables. This forecast also contributes to
improving the management of the operation and main-
tenance of these solar photovoltaic plants.

Therefore, this research aims to present a method-
ology based on data science to develop the forecast of
electric power generation from solar photovoltaic plants
and to present a comparative study of three different
techniques to obtain the forecast models: ARIMA (Au-
toregressive Integrated Moving Average) model of time
series analysis, multiple linear regression, and artifi-
cial neural network. For the evaluation of the models,
the metrics mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error
(MAPE), and the coefficient of determination R

2 were
used.

Several research studies on the proposed objectives
were reviewed, and various publications were found.
Mittal et al. [2] reviewed the use of machine learning
for photovoltaic power forecasting, reaffirming that
solar irradiance and temperature are essential for this
forecast. They concluded that hybrid models are the
best option for better predicting solar photovoltaic
energy.

Sharkawy et al. [3] developed a study using a neu-
ral network to create a short-term solar plant power
forecasting model. They considered five days of data
to train the model and the remaining day of data to
evaluate the model. The input variables were temper-
ature and radiation. They concluded that the model
obtained is adequate since, in training, the RMSE was

0.187 MWh, and in the forecasting phase, the abso-
lute error was 0.08 MWh. Kasagani y Manickam [4]
conducted a daily power forecasting study using artifi-
cial neural networks and the historical data of power,
operating hours, daily global solar radiation, and am-
bient temperature of the solar photovoltaic plant. As
a performance metric, they used the relative RMSE.
They concluded that the forecast using an artificial
neural network with three neurons in the hidden layer
was the best performing, with a MAPE of 4.18% and
a relative RMSE of 5.74%. Pattanaik et al. [5]per-
formed a comparative analysis of different methods for
power forecasting of a solar photovoltaic plant. They
concluded that forecasting using genetic algorithms is
more convenient and accurate than statistical analysis.

Akhter et al. [6]reviewed the methods for fore-
casting electric power generated by solar photovoltaic
plants based on machine learning and metaheuristic
techniques. They showed the advantages and disadvan-
tages of each method and compared heuristic methods
with machine learning methods. They concluded that
hybrid techniques (composed of at least two methods)
are the most accurate for all forecast horizons, with a
reduction of about 15% in MAPE and RMSE. Alaraj
et al. [7] developed a decision tree ensemble-based
model for power forecasting of a solar photovoltaic
plant, using meteorological data from Qassim in Saudi
Arabia and comparing their results with other models.
They considered the metrics RMSE, MAE, MAPE,
and training time to evaluate the model. They con-
cluded that the ENBG model is the best-performing
model, with an MAE of 8.89 W in the training phase
and 12.05 W in the test phase.

Anuradha et al. [8] analyzed the power forecast-
ing of a solar photovoltaic plant by applying different
machine-learning techniques and using historical data
of climatic variables and generated power. The tech-
niques used were support vector machine, random
forests, and linear regression. They concluded that the
random forest regression model was the most accurate
in its results, with 94.01%. Borunda et al. [9] presented
a fast methodology to evaluate the best location of a
solar photovoltaic plant and to forecast the electric
power it will generate, using historical data of climatic
variables and machine learning algorithms. They vali-
dated the methodology by comparing it with real solar
photovoltaic plants in Mexico.

This research consists of several sections; Section 2
explains the methodology and data used in the study;
Section 3 shows the results obtained; and Section 4
shows the research conclusions. The bibliographic ref-
erences used are also shown.
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2. Materials and methods

The methodology consists of applying the stages of a
data science project, applying its methodology in each
stage. According to VanderPlas [10], data science is an
interdisciplinary area that includes, in turn, three dif-
ferent areas: statistical skills to model and summarize
data; computer skills to design and use algorithms to
store, process and visualize these data efficiently; and
expertise in the specific field or business of research,
which in this work, is the generation of electric power
from solar photovoltaic plants.

Cielen’s work [11] presents the stages of a data sci-
ence project. The first stage consists of establishing the
objectives to be achieved, which requires knowledge of
the field, i.e., generation from solar photovoltaic plants
and meeting needs. The second stage consists of obtain-
ing the data of interest, which, in this case, correspond
to the regular measurements of the variables in a solar
photovoltaic plant from its data acquisition system.
The variables required to form the data set depend on
the project objective(s). Once the dataset is available,
the next step is to process the data, which consists
of reviewing, cleaning, transforming, and combining
these data to have the appropriate structure. Then,
exploratory data analysis is performed using statisti-
cal and graphical techniques that can be univariate,
bivariate, or multivariate. At this stage, knowledge of
interest for the study may already be found, so some
projects only reach this stage. If the knowledge from
the previous step is insufficient, or if the idea is to move
on, the data modeling stage is implemented, which con-
sists of applying mathematical algorithms to obtain
models that deepen the knowledge acquired. The num-
ber and type of algorithms depend on the objectives
set in the first stage. Finally, the decision-making stage
is reached, considering the results obtained.

One might think that the stages of a data science
project are applied sequentially; however, there may be
cases where this does not occur. Depending on the re-
sults obtained in the exploratory analysis stage and/or
the modeling stage, it may be necessary to return to
the data processing stage to improve the structure of
the data, to the data collection stage to obtain some
other variable, or even to the first stage to reformulate
the project objectives.

The methodology is applied to data from a par-
ticular solar photovoltaic plant. This section presents
the data collection and data processing stages. The ex-
ploratory data analysis and modeling stages are shown
in the next section.

2.1. Data collection

The data used in this research come from the data
acquisition system of a solar photovoltaic plant at the
U.S. National Renewable Energy Laboratory (NREL)

in Golden, Colorado. They were collected from the
public dataset web page of the NREL data acquisition
system [12].

The plant comprises five Sanyo mono-silicon so-
lar panels with 200 watts of peak power each [13].
These panels are installed in a fixed mounting, with
a 40° tilt angle and an azimuth angle 180°. The data
correspond to measurements taken and stored every
minute of the plant’s peak power output (“ac_power”)
in watts, ambient temperature (“ambient_temp”) in
degrees Celsius, irradiance (“poa_irradiance”) in watts
per square meter, wind speed in meters per second
(“wind_speed”), and soiling rate (“soiling”). Data col-
lection began on February 25, 2010, and ended on
December 13, 2016, with 1.558.875 rows (records or
instances).

2.2. Data processing

Data processing techniques are applied at this stage,
such as detecting possible missing data or duplicate
rows, outlier detection, data transformation, data col-
umn combination, and verifying the appropriate for-
mat for the different variables. The way to apply these
and other techniques using the Python programming
language is described in [14].

After an initial review, seven missing data were
detected in the ambient temperature variable, and 17
362 missing data in the wind speed variable. The rows
with missing temperature data correspond to less than
0.001% of the total rows, and the rows with missing
wind speed data correspond to approximately 1.11%
of the total rows. Although these percentages are low,
it was decided to attribute them to the mean value of
the three data closest to the missing data. It is worth
mentioning that no duplicate rows were detected.

Considering the data in the original date column,
columns corresponding to the data reading’s year,
month, week, day, and hour were created. Likewise,
considering the column of peak electric power, the
column of generated electric energy (“ac_energy”) in
kilowatt hours (kWh) was created, which is used as
the target variable in the forecast models. As for the
ambient temperature, it was rescaled from Celsius to
Kelvin units.

It was detected that there were no records for Jan-
uary, September, and October 2010, which could alter
the results of the exploratory analysis. Consequently,
this analysis was performed with existing data between
2011 and 2016.

3. Analysis and results

This section presents the stages of exploratory analysis,
data modeling, and the discussion of results.
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3.1. Exploratory data analysis

After processing the data in the previous stage,
1,429,678 rows or records were obtained correspond-
ing to the minute values of the measurements of the
variables and the other variables that were generated.
Data sets with daily, weekly, monthly, and annual res-
olutions were obtained for analysis. This was achieved
by grouping the original data with minute resolution
in the corresponding period.

Table 1. shows the results of the descriptive analysis
of the daily data using univariate statistics. It can be
observed that, except for the (soiling) rate, the mean
value of the variables is close to the median value. The
range of the solar irradiance and wind speed variables
is high, with the mean value closer to the minimum
value than the maximum value.

Table 1. Descriptive statistical summary of the data.

Statistics
Variables

ac_energy ambient_temp poa_irradiance soiling wind_speed
Mean 4.19 286.96 465.02 95.87 1.76

Standard deviation 1.66 9.91 165.34 4.28 0.71
Minimum 0.00 252.21 33.34 75.89 0.00

First quartile 3.22 279.67 360.27 94.12 1.32
Median 4.57 287.30 490.45 97.40 1.60

Third quartile 5.48 295.28 595.11 99.00 1.99
Maximum 6.98 306.29 1,237.92 100.00 6.15

Next, a correlation analysis was performed con-
sidering the climatic variables, the soiling rate, and
the AC electric generation, with data on a daily scale.
According to Navlani et al. [15], Pearson’s method is
used when the data are symmetrically distributed (nor-
mal) to calculate the correlation coefficient. However,
Spearman’s method is recommended when the data
has asymmetry and/or outliers. Kendall’s method is
used when the data is not required to follow some dis-
tribution. Because of this, all three methods were used
to calculate the coefficients of all variables concerning
AC electric power. The results are shown in Table 2.

Table 2. Correlation coefficients.

Variable
Method

Pearson Spearman Kendall
ac_energy 1.00 1.00 1.00
poa_irradiance 0.78 0.83 0.71
ambient_temp 0.43 0.32 0.21
wind_speed 0.27 0.30 0.20
soiling 0.01 0.02 0.02

To interpret the values shown in Table 2, it should
be remembered that the correlation coefficient varies
between "–1" and "1". When the value is positive, the
direction of increase or decrease of the pair of varia-
bles is the same, and when the value is negative, the
direction is the reverse. On the other hand, the abso-
lute value "1" means that the magnitude of growth or

decrease is equal for both variables, while the value
"0" means that the pair of variables is not related at
all. For the values between "0" and "1", we consider
Ratner [16] , who states that "values between 0 and
0.3 (0 and –0.3) indicate a weak positive (negative) re-
lationship. Values between 0.3 and 0.7 (–0.3 and –0.7)
indicate a moderate positive (negative) relationship.
Values between 0.7 and 1.0 (–0.7 and –1.0) indicate a
strong positive (negative) relationship".

Considering the results in Table 2, solar irradiance
has a strong and positive relationship with electric
power. Ambient temperature has a positive and mod-
erate relationship with electric power. The relationship
of wind speed with electric power is positive, weak to
moderate. While for this case, the relationship between
soiling rate and electric power is practically indepen-
dent.

Then, time curves were generated for the main va-
riables of the data set. Figure 1 shows the behavior
of the average solar irradiance (bars) vs. the electrical
energy generated (line) for each of the years of the
study period.

Figure 1. Solar irradiance vs. AC power

The average solar irradiance remained approxi-
mately constant during the study period. The energy
generated reached its maximum value in 2012, de-
creased to minimum values during 2014 and 2015, and
increased again in 2016.

Figure 2 shows the average monthly values of solar
irradiance, electric power, and AC energy generated.
The monthly energy production remained relatively
constant during the whole period, and the behavior
of the power almost perfectly followed the behavior of
the solar irradiance.

Figure 2. Monthly behavior of the variables
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Figure 3 shows the weekly average values of solar
irradiance and electric power, and the AC power gen-
erated per week of the year. The behavior of electric
power and solar irradiance is almost identical. As for
electric power, it reached its minimum value in the
fifth week of the year and its maximum value in the
thirteenth week. The energy generated decreased in
the last five weeks of the year.

Figure 3. Weekly behavior of the variables

Figure 4 shows the daily average values of solar
irradiance and electrical power, and the energy gener-
ated on each day of the month. Unlike the previous
curves, in this case, the shapes of the three curves are
approximately the same, with minimum values at the
beginning and middle of the month. The curves do not
have any defined trend (upward or downward).

Figure 4. Daily behavior of the variables

To visualize the symmetry and dispersion of the
data, Figure 5 shows the Box-Plot diagrams of each
variable on a weekly scale. Previously, the values of
each variable were scaled between zero and one for
comparison.

Figure 5. Box-Plot diagrams of the variables

According to Figure 5, it can be said that except
ambient temperature, all the other variables present
outliers. It is worth mentioning that they are slight
outliers, according to Tukey’s test [17], so they are
not imputed. Solar irradiance is the most symmetrical
variable, besides having few outliers. The soiling rate
is the variable with the most outliers and the highest
asymmetry. Ambient temperature is the variable with
the highest dispersion in its data, and solar irradiance
is the variable with the lowest dispersion.

3.2. Data modeling

Mathematical algorithms were applied to obtain fore-
casting models of the generated electric power. Specif-
ically, a multiple linear regression model, an artificial
neural network regression model, and a time series
analysis model were obtained using weekly data. The
data correspond to 310 weeks, from week 41, 2010,
to week 47, 2016. The data from week 48 to week 50,
2016, were used to compare the forecast obtained from
the three models mentioned above.

3.2.1. Multiple Linear Regression Algorithm

The multiple linear regression algorithm (MLR) is a
supervised machine learning algorithm. The model ob-
tained from this algorithm is linear in the parameters
(coefficients) and not necessarily in the explanatory or
predictor variables. The target variable is AC electric
energy in kWh, while the predictor variables are solar
irradiance ("poa_irradiance"), ambient temperature
("ambient_temp"), and wind speed ("wind_speed").
The soiling rate was not considered due to its null
correlation with the target variable; moreover, in the
first regression model, its coefficient in the regression
equation was not statistically significant.

It was verified that there are no significant corre-
lations between the predictor variables, as shown in
Figure 6. All the absolute values of the correlation co-
efficient are less than 0.3, indicating weak relationships
between the variables.

The data set, consisting of the objective and predic-
tor variables, was randomly divided into two parts. The
first part, composed of 80% of the data (256 records),
was used to create and train the regression model. The
second part, consisting of 20% (64 records), evaluated
the model obtained in the training phase. The metrics
used to assess the model were MAE and RMSE since,
according to [18], they are statistical measures used to
evaluate models. The R

2 was used, which according
to Hair et al. [19], is a "measure of the proportion of
the variance of the dependent variable concerning its
mean that is explained by the independent or predictor
variables". Alaraj et al. [7] use the same metrics except
for the R

2 .
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Figure 6. Correlation matrix of the predictor variables

After applying the algorithm, the coefficients 0.446,
0.043, and 4.002 were obtained for the predictor varia-
bles ambient temperature, solar irradiance, and wind
speed, respectively. This indicates that a unit increase
in the weekly average ambient temperature means an
increase of 0.446 kWh; a unit increase in solar irradi-
ance implies a rise of 0.043 kWh in power generation,
and a unit increase in the weekly average of wind speed
means an increase of about 4 kWh in weekly power
generation. The value of the intercept is -125.98.

Table 3 shows the results of the performance met-
rics. The predictor variables explain about 81% of
the variance of the objective variable, indicating that
the model has a good fit quality. Since the average
weekly generated electric power is 29 kWh, the ob-
tained RMSE (2.87) corresponds to almost 10% of the
mean, and the obtained MAE (2.30) is nearly 8%.

Table 3. RLM model indicators.

Indicator Value Obtained

R
2 0.81

RMSE (kWh) 2.87
MAE (kWh) 2.30
Shapiro-Wilk test to the residuals

Statistic 0.995
p-value 0.998

The Shapiro-Wilk test statistic was used to verify
the statistical assumption of normality of the residuals
required by this model, which has as its null hypoth-
esis that the data are normally distributed. The test
statistic varies between 0 and 1, indicating that the
data are normally distributed when it is close to 1. To
verify the rejection or not of the null hypothesis, the
p-value is considered. Table 3 also shows that the value
of 0.995 for the statistic and a p-value of 0.998 (greater
than 5% statistical significance) suggest insufficient
evidence to reject the null hypothesis that the residuals
are normally distributed [20].

3.2.2. Artificial neural network algorithm

When applying the artificial neural network (ANN),
the same data used for the multiple linear regression
model, the same objective variable, and the same pre-
dictor variables were used. For cross-validation of the
model, 80% of the data (256 records) were used for
training, and 20% of the data (64 records) were used
for evaluation.

According to Kapoor et al. [21], a "multilayer per-
ceptron" model was used, composed of the input layer,
the output layer, and a group of hidden layers between
the input and output. Three layers were used for this
study: an input layer, an output layer, and a hidden
layer. All the layers are dense because, according to
Moolayil [22], "a dense layer is a regular layer that
connects all its neurons with all the neurons of the
previous layer".

The activation functions were defined for each of
the network layers. The rectified linear activation func-
tion (ReLU) was applied for the input and hidden
layers, allowing only positive values to pass through.
These two layers have a total of 256 neurons each.
As for the output layer, this has a linear activation
function so as not to limit the forecast values, and
it has only one neuron, which is needed to forecast
the electrical energy. According to Chollet [23], a loss
function is required, which is used to control the de-
viation of the forecast from its expected value; so, for
this study, MAE and MSE were used as loss functions.
If the deviation is not adequate, its value is fed back
to the input through an optimization function, which
according to Chollet [23], updates the input weights
and repeats the cycle. In this research, he used the
root-mean-square propagation optimizer (RMSProp).
Sharkawy et al. [3] also use an ANN with three layers
but with a hyperbolic activation function.

Table 4 shows the results obtained by applying
the ANN algorithm. The quality of the fit is around
88%, which is better than that obtained with the RLM
model. Both RMSE and MAE are lower than those
obtained with the MLR model. As for the analysis of
the residuals, they are normally distributed since the
test statistic is close to 1 and the p-value is higher
than 5% of statistical significance.

Table 4. ANN model indicators.

Indicator Value obtained

R
2 0.88

RMSE (kWh) 2.35
MAE (kWh) 1.85
Shapiro-Wilk test to the residuals

Estadístico 0.967
p-valor 0.422
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3.2.3. Time series analysis

When applying the analysis to the time series of the
generated AC electric power, an ARIMA model is ob-
tained, which requires three parameters: the order of
the autoregressive part p, the order of integration d,
and the order of the moving average q. If the series is
seasonal, the three parameters for the seasonal part (P,
D, Q) must also be considered. The model is obtained
by applying the Box-Jenkins methodology, presented
in [24] and mentioned in more detail in [25].

The methodology starts with data preparation, in-
cluding transformation to stabilize variance and/or
differencing to make the series stationary (parameter
d is defined). The potential initial models are selected
using the autocorrelation and partial autocorrelation
functions (parameters p and q are defined). The pa-
rameters of the possible models are estimated, and the
best of them is selected using a performance criterion.
This criterion is usually the AIC (Akaike Information
Criteria), which, according to [26] , is the most popular
for selecting the best model. This is followed by the
diagnostic stage, in which the residuals are analyzed
to verify that they are equal or approximately equal
to white noise. Finally, the model is used to forecast
the time series.

Following the methodology, the extended Dickey-
Fuller test is applied to verify the stationarity of the
AC power series. According to Gujarati and Porter [27],
this test is also known as the unit root test and is pop-
ular in determining the stationarity or non-stationarity
of a time series. The test statistic was less than the
three critical values (1%, 5%, 10%). The p-value is
approximately equal to zero, so the null hypothesis of
the existence of a unit root is rejected. Therefore, it
can be said that the series in level is stationary. The
latter implies that the parameter d is zero.

Figure 7 shows the graphs of the autocorrelation
function (upper) and the partial autocorrelation func-
tion (lower) of the AC power series, considering up
to 106 lags because the data present annual season-
ality (52 weeks). There are at least two significant
autocorrelation values. The series is confirmed to be
seasonal, with the first seasonal value (week 52) signif-
icant for both graphs, which should be considered in
the proposed model.

After performing the corresponding iterations min-
imizing the value of the AIC metric and checking
the characteristics of the residuals obtained with
each model, the model selected for forecasting is
ARIMA(0,0,2)(1,1,1,1)52. The results obtained from
forecasting with the ARIMA model and the other
models are presented below.

Figure 7. Autocorrelation and partial autocorrelation
functions

3.2.4. Comparison of forecasts

Forecasts of electric power generated for weeks 48, 49,
and 50 of 2016 were performed using each of the three
models and were evaluated using RMSE, MAE, and
MAPE metrics. Table 5, shows the results of the energy
forecast in kWh, indicating that the ARIMA model
forecast is the closest to the actual values of energy
generated.

Table 5. Pronósticos de energía AC.

Week Real MRL ANN ARIMA
Energy Forecast Forecast Forecast

48 23.63 28.15 30.13 25.04
49 20.20 23.68 22.48 18.54
50 21.92 27.36 26.02 22.97

Table 6 shows the performance metrics of the three
models for the forecasts presented in Table 5. The
ARIMA model is the best performer, with a MAPE of
about 6% versus almost 20% for the other two models.
The MAE and RSME are much lower for the ARIMA
model.

Table 6. Performance of the models.

Metrics
Models

MLR ANN ARIMA
MAE (kWh) 4.48 4.29 1.38

RMSE (kWh) 4.55 4.63 1.40
MAPE (%) 20.39 19.16 6.35

The results in Table 6 agree with those reported
by [25] since these authors state that moving average
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methods are suitable for the short term and that re-
gression methods are more appropriate for the medium
and long term. For these authors, the "short term" is
associated with periods of up to three months, while
the "long term" refers to more than two years.

4. Conclusions

The behavior of the electrical energy generated over
time is similar to the behavior of the solar irradiance
for data with a resolution close to the minute resolution
of the measurements, i.e., daily resolution. This result
agrees with the correlation analysis, which showed that
solar irradiance correlates 0.78 with the electrical en-
ergy generated. Regarding ambient temperature and
wind speed, the correlation coefficient with electric
power is between moderate and weak, with 0.43 and
0.27, respectively.

The predictor variables of the multiple linear re-
gression model explain 81% of the variability of the
target variable. The analysis of the residuals derived
from this model indicates that they follow a normal
distribution. As for the artificial neural network model,
the coefficient of determination was 88%; the MAE
and RMSE indicators were lower compared to the
regression model, and the residuals were normally dis-
tributed.

While finding the appropriate ARIMA model, it
was determined that the AC electric power level series
is stationary and has annual stationarity. The model
obtained minimizes the AIC criterion; the residuals
are independently distributed and are not serially cor-
related.

When forecasting with the models obtained, the
ARIMA model performed best, with the lowest values
of the three error indicators: MAE, RMSE, and MAPE,
with 1.38 kWh, 1.40 kWh, and 6.35%, respectively. The
neural network model showed lower MAPE and MAE
indicators than those obtained with the multiple linear
regression model, but its RMSE metric was the highest
of the three models.
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