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Abstract Resumen
The IoT is a technological trend that enables the
application of intelligent systems between connected
things. IoT is being applied in different fields, in-
cluding agriculture, where new techniques such as
hydroponics are booming. As the increase in ambient
temperature and climate changes caused by global
warming have negatively affected agricultural produc-
tion and the rapid growth of the world’s population,
which will reach approximately 9.6 billion by 2050, the
industrial pace of agriculture needs to be even faster
and more precise. This research presents a scalable
IoT monitoring system based on Sigfox technology
with 89.37% prediction capabilities through neural
networks for agricultural applications. An effective
four-layer architecture consisting of perception, net-
work, middleware, and application is provided. The
system was experimentally tested and validated for
five months by monitoring temperature, humidity,
and nutrient recirculation control in a hydroponic
system in Loja, Ecuador. The developed system is
smart enough to adequately control the hydroponi-
cenvironment based on the multiple input parameters
collected, facilitating effective management for farm-
ers and improving production.

El IoT es tendencia tecnológica que hace posible
sistemas inteligentes entre cosas conectadas. Su apli-
cación se encuentra en diferentes campos, uno de
ellos es la agricultura, donde el uso de nuevas técni-
cas, como la hidroponía, está en auge. Es importante
abordar esta área, porque la población mundial alcan-
zará un aproximado de 9600 millones de habitantes
para el 2050, por ende, para satisfacer esta demanda
se necesita que el ritmo industrial agrícola sea aún
más rápido y preciso. Además, el aumento de la tem-
peratura ambiente y los cambios climáticos por el
calentamiento global también están afectando negati-
vamente a la producción agraria. En esta investigación
se presenta un sistema de monitoreo IoT escalable
basado en la tecnología Sigfox con capacidades de
predicción del 89,37 % a través de redes neuronales
para aplicaciones agrícolas. Se proporciona una ar-
quitectura efectiva de cuatro capas que consta de
percepción, red, middleware y aplicación. Para la
validación, el sistema fue construido, probado experi-
mentalmente y validado mediante el monitoreo de la
temperatura, humedad y control de la recirculación
de nutrientes, en un sistema hidropónico de la ciudad
de Loja en Ecuador, durante cinco meses. El sistema
desarrollado es lo suficientemente inteligente para
proporcionar la acción de control adecuada para el
entorno hidropónico, en función de los múltiples pará-
metros de entrada recopilados, facilitando una gestión
efectiva para los agricultores, por ende, mejorando su
producción.
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1. Introduction

The Internet of Things (IoT) is a cutting-edge tech-
nology that has brought multiple benefits to the pop-
ulation and organizations in recent years. One of the
main benefits of using this innovative technology is
the ability to produce and consume services in real-
time. IoT offers solutions in different scenarios such
as traffic, healthcare, security, smart homes and cities,
etc. [1–3]. IoT technology is also used in different ar-
eas and levels of industrial and agricultural produc-
tion in agriculture [4]. The main contribution of IoT
in agriculture is monitoring, which helps automation
and information gathering to have precision-controlled
crops and greenhouses [5]. Precision agriculture aims
to provide a decision-support system that helps farm-
ers implement efficient farming practices to increase
profitability, reduce environmental risks, and preserve
natural resources [6, 7].

Agricultural monitoring applications use sensors
or devices to help farmers collect relevant data that
benefit crop growth and production. Some IoT-based
approaches analyze and process data remotely by ap-
plying cloud services [8–10], which helps researchers
and farmers make better decisions. A case study of IoT
management that monitors variables such as wind, soil,
atmosphere, and water over a large area is proposed
in [11]. This study identifies agricultural monitoring
solutions considering sites or subdomains to monitor
soil, air, temperature, water, diseases, location, envi-
ronmental conditions, pests, and fertilization. It also
explains how IoT enhances human interaction through
electronic devices, low-cost communication protocols,
and communication technologies.

Sigfox wireless communication technology is an
emerging low power wide area (LPWAN) technology
that offers secure data transmission and low power
consumption [12]. It uses unlicensed radio spectrum
in the industrial, scientific, and medical (ISM) bands
and enables two-way communication between users
and sensors on an individual or group level. Therefore,
Sigfox is suitable for IoT applications that only require
the transmission of small data packets and low power
consumption. Hernández et al. [9] present a relevant
case where they design a scalable IoT-based monitor-
ing system with prediction capabilities for agricultural
applications, provide an effective four-layer architec-
ture, and implement the connectivity of greenhouse
monitoring system devices over the Sigfox network.

Despite recent advances in IoT technologies, their
implementation in agriculture remains challenging.
One of the main problems is monitoring the variation
of weather conditions in greenhouses or crop fields. It
is necessary to efficiently place several measurement
points within the crop fields to obtain more detailed
information about the behavior of environmental con-
ditions. This work aims to design and implement an

IoT-based monitoring system for hydroponic crops
using a scalable, modular, and low-cost system archi-
tecture.

The system monitors weather conditions and risk
factors affecting crop growth, considering temperature
and humidity as relevant variables. For this, a cus-
tomized IoT device was built using the Sigfox network
to send the data to the Internet, and the ThingSpeak
platform was used to visualize and analyze the data. A
machine learning algorithm was created to predict tem-
perature considering humidity and the data collected
by the system to simulate future changes in climate
variables. The system was validated in a hydroponic
lettuce system in Loja. The main contribution of this
research is to propose the application of a practical
and scalable system to monitor and control climatic
conditions in crops. The IoT structure consists of a
four-layer architecture: a sensing layer to collect crop
information, a network layer to facilitate Internet con-
nections, a middleware layer to enable cloud services,
and an application layer to deliver specific information
to users.

The research is divided into sections: Section 1,
introduction; Section 2, materials and methods; Sec-
tion 3, architecture of the proposed IoT monitoring
system; Section 4, design and implementation of the
system components; Section 5, experimental validation
of the implemented monitoring system; and Section 6,
conclusions and future directions of the research.

2. Materials and methods

This research was conducted at the Marieta de Vein-
timilla School in Loja, with a quantitative experimental
approach to develop and implement an IoT system
for monitoring and predicting environmental variables
such as temperature, humidity, and UV radiation. For
this, a phased model was proposed according to the
proposed architecture.

The first phase was to develop the IoT prototype
using Sigfox technology and electronic components of
free software and hardware. The second phase was to
collect temperature and humidity data using DTH22
and ML8511 UV sensors to determine UV radiation.
A Ufox controller synchronized to a real-time clock
(RTC) unit was used as a central module, which ac-
tivates and deactivates a water pump that provides
liquid and nutrients to a hydroponic growing system.
Sigfox technology transferred the real-time information
to the ThingSpeak IoT platform.

The third phase focused on a data analysis method
based on neural networks. The information collected
by the sensors was the basis for the learning model to
predict the variables related to the system and thus
predict the environmental conditions that affect plant
growth. The final phase was to present the data to the



Montaño-Blacio, et al. / Design and deployment of an IoT-based monitoring system for hydroponic crops11

user to monitor the status of the sensors and estab-
lish correlation. The inverse proportionality between
the temperature and humidity variables, essential for
determining cultivation parameters in the hydroponic
system, was verified.

2.1. System architecture

The study of the Internet of Things (IoT) has resulted
in extensive scientific literature. There are multiple
architectures, frameworks, or conceptual models for
IoT systems [13–17]. However, there is no single stan-

dard reference architecture that encompasses a variety
of technologies. In [18, 19], the incorporation of IoT
technologies for sustainable agriculture is discussed.

Figure 1 shows the proposed multi-layer architec-
ture for the IoT-based hydroponic monitoring system.
This design has four layers: sensing layer, network
layer, middleware layer, and application layer, and
streamlines production processes using a practical and
scalable system. This means that the architecture al-
lows monitoring several variables or an entire process
at minimal cost, benefiting the cultivation process
through hydroponic systems or smart farming.

Figure 1. Proposed architecture for the monitoring system

Optimal plant growth conditions depend on the
needs and requirements of each plant. Therefore, an
environmental monitoring system is essential to maxi-
mize effective and sustainable crop production. Gen-
erally, the microclimatic parameters that determine
crop productivity must be continuously monitored and
controlled to create an optimal environment. However,
climatic heterogeneity can cause significant differences
in quantitative and qualitative plant characteristics,
productivity, and the development of various diseases.
The sensing layer shows the connected sensors and
devices that enable remote climate monitoring.

Some environmental factors that affect plant
growth are temperature, relative humidity, CO2, light,
and water [20]. For this case study, the IoT device
includes only temperature, relative humidity, UV ra-
diation, and water and nutrient monitoring sensors.
These sensors are connected to a digital, analog, and
PWM input of a Ufox microcontroller with a Sigfox
module integrator for communication. The RTC mod-
ule connects using an I2C interface to the controller
that controls the time for the recirculation of nutrients
to the system. It has a real-time calendar that turns
on a pump every four hours for ten minutes, sufficient
time for adequate growth of the lettuce plants.

Communication technologies play an essential role
in the implementation of IoT systems. There are sev-

eral standards for data transmission between sen-
sors and IoT platforms. They can be classified as
short-range wireless networks (e.g., Zigbee, Bluetooth,
Z-Wave, Wifi, etc.) or long-range wireless networks
(GPRS, 3G, 4G, and 5G). Short-range networks re-
strict the ability to provide global coverage, while
conventional long-range networks are expensive and re-
quire much power. Consequently, IoT applications have
driven a new type of wireless technology called low-
power wide area network (LPWAN) [21]. These further
wireless communications are better suited to machine-
to-machine (M2M), and IoT devices; LoRaWAN, Sig-
fox, and NB-IoT are among the leading LPWAN tech-
nologies for IoT implementation. Each business activity
has different requirements and specifications for IoT
connectivity, such as coverage, performance, packet
size, power consumption, cost, etc.

For hydroponic system monitoring applications,
it is crucial to establish connections to use low-cost
hardware with long-distance coverage and low power
consumption, and scalability. This is why the con-
nectivity of the proposed system to the IoT device
over a Sigfox network was established. Once the data
were collected at the IoT device, the LPWAN module
sent the data to the Internet using the Sigfox network.
The data communication followed the Sigfox protocol,
where each device has a unique ID to route and sign
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the messages.

Agricultural data analysis requires involving farm-
ers in creating data processing services to optimize the
crop production cycle. Because of this, a scalable mid-
dleware layer was integrated to develop, implement,
and operate the software. The middleware or service
layer is where users’ software services or applications
are created and managed. This layer was generated
using the ThingSpeak platform, which supports service
management and data processing.

An IoT system user interface that allows the moni-
toring, visualization, and interpretation of data coming
from the system’s sensors was proposed. A web applica-
tion interface was integrated into the Sigfox back-end
platform through its application programming inter-
faces (APIs). The web API integration is based on
HTTPS REST requests with the POST method and
provides the interface from the protocol stack to the ap-
plication. Therefore, the web application displays the
measurements collected from the sensors, triggering
calls through the Sigfox REST API. The ThingSpeak
platform interface was used to streamline this process,
as shown in Figure 2.

Figure 2. Data visualization and monitoring

2.2. Implementation of IoT-based monitoring
system

Figure 3 shows the diagram of the IoT device created
to monitor temperature, humidity, and UV radiation.
This prototype comprises four main components: a
communication module, temperature and humidity
sensor, UV radiation sensor, and RTC control. This
device can be powered by batteries or mains electricity.
Figure 4 shows the implemented IoT device; the Ufox
communication module that enables wireless connec-
tion to the cloud through the Sigfox network service
is shown inside a yellow rectangle.

The data from the proposed device were val-
idated by comparing humidity, temperature, and
UV radiation data from the TuData project
(http://tudata.info/), a form of meteorological data
collection in Loja.

Figure 3. IoT device diagram

Figure 4. IIoT device implementation

Figure 5 and Figure 6 show the close relationship
between the data obtained in January, demonstrating
that the IoT sensor sent consistent and valid infor-
mation related to the TuData weather measurement
system.

The DHT22 sensor was used as a digital interface
to measure humidity and temperature. A capacitive
sensor was incorporated to calculate the percentage of
relative humidity in the air, and a microcontroller was
used to convert analog to digital values. The humidity
measurement range was 0 to 100%, with an accuracy of
2%. The temperature measurement range ranged from
-40 to 80 degrees Celsius with a measurement accuracy



Montaño-Blacio, et al. / Design and deployment of an IoT-based monitoring system for hydroponic crops13

of fewer than ±0.5 degrees Celsius at a resolution of 0.1
degrees. The sensing time was 2 seconds. The power
supply range was 3 to 6 volts DC. Only one wire or
conductor cable not exceeding 20 meters is required
for connection to the microcontroller.

Figure 5. Humidity histogram of the created IoT device.

Figure 6. Relative humidity histogram of the TuData
project.

2.3. Prediction

Artificial neural networks (ANNs) application for data
analysis has increased considerably nowadays due to
their multiple uses and advantages, such as adaptive
learning, fault tolerance, and real-time operations [22].
ANNs predict climatic variables, greenhouse-type envi-
ronments, and implicit variables, such as humidity, tem-
perature, altitude, etc. ANN techniques are based on
mathematical models that simulate the principles of bi-
ological neural networks, with the ability to learn from
their environment [23]. They are generally distributed
in layers and interconnected through a network archi-
tecture [24], where three layers can be distinguished:
the input layer, the hidden layer, and the output layer.
Other Machine Learning (ML) approaches, such as
support vector machines, fuzzy logic, genetic models,
etc., can be used in predicting weather variables. Still,
the ANN model has an easy-to-implement structure
and has shown better harmony between performance
and complexity [25]. Based on a supervised analysis,
an ML algorithm was defined using the R language to

analyze the patterns of a hydroponic system to pre-
dict temperature as a function of humidity following
a three-layer model (input layer, hidden layer, and
output layer) [23], because this structure is related to
Kolmogorov’s theory, which states that any continu-
ous function can be approximated by a network with
a hidden layer [26]. Figure 7 shows the implemented
three-layer ANN

Figure 7. Structure of the proposed neural network.

The prediction of temperature (x) over time (m) is
expressed as [26], using equation (1).

x̂ [m] =
M∑

j=0
w

(2)
j,1 ϕ(aj) (1)

With (2):

aj =
{ 0 if j = 0∑N

i=0 ω
(1)
i,j x [i] = XT W

(1)
j otherwise

(2)

Where ϕ(aj) is the output of the
j-ésima neuron with activation function,
ϕ(aj) = tahn(aj), x = (1, x [1] , . . .,
x [N ])T the vector of input signals, and

w =
{

w
(ι)
1 , . . ., w

(ι)
M

}
, whit W

(ι)
j =

(
W ι

1,j,...,W ι
N,j

)T

for ι = 1, 2 , the sets of all network weight and bias
parameters. The transpose of a vector is denoted by
()T , and the identity activation function f (z) = z
determines the total output of the neural network.
Finally, the network is trained with a Resilient Back-
propagation algorithm to calculate the error gradient.

3. Results and discussion

The proposed IoT monitoring system was implemented
in a hydroponic system for growing lettuce in Loja,
Ecuador. Soilless cultivation is becoming an effective
technique for planting certain vegetables. Optimal
temperatures for lettuce cultivation are cold climates
ranging between 15 and 18 degrees Celsius, maximum
temperatures between 18 and 24 degrees Celsius, and
relative humidity of 70% [27]. The quantitative anal-
ysis of this study aims to provide information on the
current understanding of new IoT technologies and
their impact on existing production methods.
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The size of the hydroponic system studied is ap-
proximately 400 plants, as shown in Figure 8. Ambient
temperature and humidity measurements were taken
every 10 minutes, totaling 144 samples daily for five
months between January and May 2022. However, sam-
ples were missing due to some communication, power,
or other failures. We estimated the missing samples
using the nearest-neighbor imputation technique to
solve this problem.

The ThingView application was used as a mobile
user interface for real-time monitoring, interpretation,
and visualization. This application functions as the
interaction interface between the user and the system
for precision crop control and monitoring. Figure 9
shows the measurement dataset from the web user

interface.

Figure 8. Case study hydroponic system

Figure 9. Temperature and humidity measurements

3.1. Training and testing of ANNs

Before the training and testing process for the adjust-
ment of the prediction model, it was necessary to define
the origin of the data taken from sensors with IoT tech-
nology. These data were transmitted and captured in
real-time during January and May 2022, considering
this time is the winter season according to the climatic
zone. It was possible to collect 6000 records purified
through a cleaning and validation process to obtain a
total of 5063 base records for the experimentation that
served as the primary input of the neural network.

The training data considered 70 % of the total
validated records, while the remaining 30 % was used
in testing. In the experimentation practice, a data nor-
malization process was performed to achieve a better
coupling between the model and the data, where dmax

is the highest value in the data set and dmin is the
lowest; rmax = 1 , and rmin = −1 represent the maxi-
mum and minimum values for the corresponding range
mapping.

d̄s [kT ] =
[

ds [kt] − dmin

dmax − dmin
(rmax − rmin)

]
+ rmin (3)

After the training process, the optimized weights

and ANN biases were accurately calculated. The test
data set was evaluated using the root mean square
error (RMSE) and a confusion matrix to assess the
accuracy of the predictions by performing a supervised
analysis. The RMSE established the absolute level of
fit that the model generated on the data by comparing
the value predicted by the ML model with the actual
value in the dataset [28] (equation (4)).

Where ŷ is a vector containing a data set of n
predictions, and y is the vector of actual values to
evaluate the denormalized prediction results compared
to the simulated unscaled data.

RMSE = 1
n

n∑
i=1

(ŷι − yi)2 (4)

3.2. Prediction results

Implementing a design of homogeneous experiments
was necessary to obtain the results. The primary va-
riable analyzed was the number of neurons to be es-
tablished in the network’s hidden layer to determine
the best scenario. The variables were also validated
using correlation indexes, showing the association level
between two quantitative random variables. A degree
of correlation is considered to exist when the data of
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one variable varies systematically with the values of
the other [29].

Figure 10 shows a significant negative correlation
index between the temperature and humidity varia-
bles corresponding to -0.95, which can be considered a
strong negative correlation.

Figure 10. Correlation index.

The design of experiments emphasizes the number
of neurons within the hidden layer of the network and

the interconnections generated by the relationships
between them. The experiments were validated by ran-
domized cross-validation. Table 1 shows the model,
the number of neurons in the hidden layer, the RMSE
value generated, and the prediction accuracy obtained.

The model that best fits this type of data is ANN
4, which consists of four neurons in the hidden layer
and has a better performance, with an RMSE value
of 0.11 and an accuracy of 89.37 %, according to the
supervised data analysis. Figure 11 shows the structure
of the neural network.

Figure 11. Neural network structure

Table 1. Model indications

Model Neurons Algorithm
Activation Learning

Threshold RMSE Accuracy
function rate

RNA 1 1 Resilient Sigmoid 0.01 0.01 0.14 87.33%Backpropagation

RNA 2 2 Resilient Sigmoid 0.01 0.01 0.13 88.01%Backpropagation

RNA 3 3 Resilient Sigmoid 0.01 0.01 0.14 87.1%Backpropagation

RNA 4 4 Resilient Sigmoid 0.01 0.01 0.11 89.37%Backpropagation

RNA 5 5 Resilient Sigmoid 0.01 0.01 0.14 87.33%Backpropagation

Considering the variables analyzed, the experimen-
tal environment, and the data obtained, it can be
stated that the temperature can be predicted with
89.37 % accuracy as a function of humidity, according

to the experiments performed and the ANN 4 model
defined. Figure 12 shows the prediction results. The
predicted values were compared with the actual tem-
perature measured by the IoT system for one week
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Figure 12. System temperature and expected temperature.

4. Conclusions

This research presented an IoT-based monitoring sys-
tem for smart agriculture, designed and implemented
to provide optimal conditions and cost-effective so-
lutions for plant cultivation methods and life cycles
of hydroponic systems. The system design, implemen-
tation, and machine learning application for environ-
mental prediction were analyzed in detail. The IoT
system was experimentally validated by monitoring
temperature and humidity for five months. The system
availability rate during this period was approximately
85 % due to human failures and packet loss. The case
study demonstrated that 100% spatial coverage of the
system could be achieved with only one IoT device
for a hydroponic system with a capacity of 400 plants.
Accurate automatic control for nutrient recirculation
was conducted with 100 % functionality through the
control of the RTC module.

A data-driven prediction model was implemented
using an artificial neural network. The results showed
that the ANN model could be used to predict tempera-
ture as a function of humidity; with a simple three-layer
ANN and four neurons in the hidden layer, the pre-
diction accuracy was 89.37 %. Compared to similar
solutions, the proposed IoT framework is more flexible
and meets the requirements for optimizing productivity
and sustainability through emergent communication.
Further studies will focus on experimental greenhouse
validation using automatic control and long-term tem-
perature and humidity predictions. Another relevant
topic for future research could be implementing and
evaluating specific operations and/or strategic decision-
making using the proposed IoT system architecture.
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