A review of the state-of-the-art of solar thermal collectors applied in the industry

Main Article Content

Willian Carrión-Chamba https://orcid.org/0000-0003-3039-9545
Wilson Murillo-Torres https://orcid.org/0000-0002-5878-2338
Andrés Montero-Izquierdo http://orcid.org/0000-0001-5366-8029

Abstract

The energy consumption associated with the industry sector represents 38% of the global energy demand, being an important aspect that marks the development of a country. In this sense, it is extremely important to diversify the different energy sources and incorporate the use of renewable energy sources, such as solar energy, not only with the idea of ensuring energy supply, but also as elements that enable the reduction of energy emissions generated by the use of fossil fuels. This work addresses the main solar collector technologies that may be incorporated into different types of industries, based on experiences and research in other countries. Based on this review, it has been seen that an important part of the industries worldwide requires temperatures up to 250 °C in their processes, which makes suitable the use of solar energy technology. Depending on each industry, flat plate, vacuum tube, Fresnel type or parabolic trough solar collectors may be used. Finally, the savings associated with some facilities are detailed and the challenges related to this sector are addressed.
Abstract 188 | PDF (Español (España)) Downloads 66 PDF Downloads 59

References

[1] B. Koçak, A. I. Fernández, and H. Paksoy, “Review on sensible thermal energy storage for industrial solar applications and sustainability aspects,” Solar Energy, vol. 209, pp. 135–169, 2020. [Online]. Available: https://doi.org/10.1016/j.solener.2020.08.081
[2] IEA. (2020) World energy balances: Overview. [Online]. Available: https://bit.ly/3jEw90a
[3] S. H. Farjana, N. Huda, M. A. P. Mahmud, and R. Saidur, “Solar industrial process heating systems in operation - current ship plants and future prospects in Australia,” Renewable and Sustainable Energy Reviews, vol. 91, pp. 409–419, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2018.03.105
[4] V. Pranesh, R. Velraj, S. Christopher, and V. Kumaresan, “A 50 year review of basic and applied research in compound parabolic concentrating solar thermal collector for domestic and industrial applications,” Solar Energy, vol. 187, pp. 293–340, 2019. [Online]. Available: https://doi.org/10.1016/j.solener.2019.04.056
[5] S. H. Farjana, N. Huda, M. P. Mahmud, and R. Saidur, “Solar process heat in industrial systems - a global review,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2270–2286, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2017.08.065
[6] S. K. Verma, N. K. Gupta, and D. Rakshit, “A comprehensive analysis on advances in application of solar collectors considering design, process and working fluid parameters for solar to thermal conversion,” Solar Energy, vol. 208, pp. 1114–1150, 2020. [Online]. Available: https://doi.org/10.1016/j.solener.2020.08.042
[7] C. A. Schoeneberger, C. A. McMillan, P. Kurup, S. Akar, R. Margolis, and E. Masanet, “Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the united states,” Energy, vol. 206, p. 118083, 2020. [Online]. Available: https://doi.org/10.1016/j.energy.2020.118083
[8] W. Weiss and M. Spörk-Dür, Solar Heat Worldwide. IEA Solar Heating & Cooling Programme, Austria, 2020. [Online]. Available: https://bit.ly/2WT0yPM
[9] K. Ravi Kumar, N. V. V. Krishna Chaitanya, and N. Sendhil Kumar, “Solar thermal energy technologies and its applications for process heating and power generation - a review,” Journal of Cleaner Production, vol. 282, p. 125296, 2021. [Online]. Available: https://doi.org/10.1016/j.jclepro.2020.125296
[10] IEA. (2017) Renewable energy for industry. [Online]. Available: https://bit.ly/3BGLYty
[11] M. Bolognese, D. Viesi, R. Bartali, and L. Crema, “Modeling study for low-carbon industrial processes integrating solar thermal technologies. a case study in the Italian Alps: The Felicetti pasta factory,” Solar Energy, vol. 208, pp. 548–558, 2020. [Online]. Available: https://doi.org/10.1016/j.solener.2020.07.091
[12] A. Shahsavari and M. Akbari, “Potential of solar energy in developing countries for reducing energy-related emissions,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 275–291, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2018.03.065
[13] A. Gautam and R. Saini, “A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications,” Solar Energy, vol. 207, pp. 937–956, 2020. [Online]. Available: https://doi.org/10.1016/j.solener.2020.07.027
[14] L. Evangelisti, R. De Lieto Vollaro, and F. Asdrubali, “Latest advances on solar thermal collectors: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 114, p. 109318, 2019. [Online]. Available: https://doi.org/10.1016/j.rser.2019.109318
[15] M. Ghazouani, M. Bouya, and M. Benaissa, “Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes,” Renewable Energy, vol. 152, pp. 984–998, 2020. [Online]. Available: https://doi.org/10.1016/j.renene.2020.01.109
[16] M. Imtiaz Hussain, C. Ménézo, and J.-T. Kim, “Advances in solar thermal harvesting technology based on surface solar absorption collectors: A review,” Solar Energy Materials and Solar Cells, vol. 187, pp. 123–139, 2018. [Online]. Available: https://doi.org/10.1016/j.solmat.2018.07.027
[17] M. P. Islam and T. Morimoto, “Advances in low to medium temperature non-concentrating solar thermal technology,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2066–2093, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2017.08.030
[18] G. Barone, A. Buonomano, C. Forzano, and A. Palombo, “Chapter 6 - solar thermal collectors,” in Solar Hydrogen Production, F. Calise, M. D. D’Accadia, M. Santarelli, A. Lanzini, and D. Ferrero, Eds. Academic Press, 2019, pp. 151–178. [Online]. Available: https://doi.org/10.1016/B978-0-12-814853-2.00006-0
[19] A. Veera Kumar, T. Arjunan, D. Seenivasan, R. Venkatramanan, and S. Vijayan, “Thermal performance of an evacuated tube solar collector with inserted baffles for air heating applications,” Solar Energy, vol. 215, pp. 131–143, 2021. [Online]. Available: https://doi.org/10.1016/j.solener.2020.12.037
[20] M. Aramesh and B. Shabani, “On the integration of phase change materials with evacuated tube solar thermal collectors,” Renewable and Sustainable Energy Reviews, vol. 132, p. 110135, 2020. [Online]. Available: https://doi.org/10.1016/j.rser.2020.110135
[21] S. Suman, M. K. Khan, and M. Pathak, “Performance enhancement of solar collectors - a review,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 192–210, 2015. [Online]. Available: https://doi.org/10.1016/j.rser.2015.04.087
[22] A. Shafieian, M. Khiadani, and A. Nosrati, “A review of latest developments, progress, and applications of heat pipe solar collectors,” Renewable and Sustainable Energy Reviews, vol. 95, pp. 273–304, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2018.07.014
[23] S. A. Waghmare and N. P. Gulhane, “Design configurations and possibilities of reflector shape for solar compound parabolic collector by ray tracing simulation,” Optik, vol. 176, pp. 315–323, 2019. [Online]. Available: https://doi.org/10.1016/j.ijleo.2018.09.082
[24] C. Jiang, L. Yu, S. Yang, K. Li, J. Wang, P. D. Lund, and Y. Zhang, “A review of the compound parabolic concentrator (cpc) with a tubular absorber,” Energies, vol. 13, no. 3, p. 695, 2020. [Online]. Available: https://doi.org/10.3390/en13030695
[25] D. Gao, G. Gao, J. Cao, S. Zhong, X. Ren, Y. N. Dabwan, M. Hu, D. Jiao, T. H. Kwan, and G. Pei, “Experimental and numerical analysis of an efficiently optimized evacuated flat plate solar collector under medium temperature,” Applied Energy, vol. 269, p. 115129, 2020. [Online]. Available: https://doi.org/10.1016/j.apenergy.2020.115129
[26] L. Kumar, M. Hasanuzzaman, and N. Rahim, “Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review,” Energy Conversion and Management, vol. 195, pp. 885–908, 2019. [Online]. Available: https://doi.org/10.1016/j.enconman.2019.05.081
[27] E. Zarza-Moya, “7 - concentrating solar thermal power,” in A Comprehensive Guide to Solar Energy Systems, T. M. Letcher and V. M. Fthenakis, Eds. Academic Press, 2018, pp. 127–148. [Online]. Available: https://doi.org/10.1016/B978-0-12-811479-7.00007-5
[28] O. A. López-Núñez, J. A. Alfaro-Ayala, O. Jaramillo, J. Ramírez-Minguela, J. C. Castro, C. E. Damián-Ascencio, and S. Cano-Andrade, “A numerical analysis of the energy and entropy generation rate in a linear Fresnel reflector using computational fluid dynamics,” Renewable Energy, vol. 146, pp. 1083–1100, 2020. [Online]. Available: https://doi.org/10.1016/j.renene.2019.06.144
[29] D. Sakthivadivel, K. Balaji, D. Dsilva Winfred Rufuss, S. Iniyan, and L. Suganthi, “Chapter 1 - solar energy technologies: principles and applications,” in Renewable-Energy-Driven Future, J. Ren, Ed. Academic Press, 2021, pp. 3–42. [Online]. Available: https://doi.org/10.1016/B978-0-12-820539-6.00001-7
[30] Solar Payback, Calor solar para la industria. Solar Payback. [Online]. Available: https://bit.ly/3jJE10l
[31] D. Oosthuizen, N. J. Goosen, and S. Hess, “Solar thermal process heat in fishmeal production: Prospects for two South African fishmeal factories,” Journal of Cleaner Production, vol. 253, p. 119818, 2020. [Online]. Available: https://doi.org/10.1016/j.jclepro.2019.119818
[32] A. Cetina-Quiñones, J. Xamán, A. Bassam, M. Escalante Soberanis, and I. Pérez-Quintana, “Thermo-economic analysis of a flat solar collector with a phase changing material under tropical climate conditions: Residential and industrial case,” Applied Thermal Engineering, vol. 182, p. 116082, 2021. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2020.116082
[33] A. Anastasovski, “Improvement of energy efficiency in ethanol production supported with solar thermal energy – a case study,” Journal of Cleaner Production, vol. 278, p. 123476, 2021. [Online]. Available: https://doi.org/10.1016/j.jclepro.2020.123476
[34] C. Maillot, J. Castaing-Lasvignottes, and O. Marc, “Modelling and dynamic simulation of solar heat integration into a manufacturing process in reunion island,” Procedia Manufacturing, vol. 35, pp. 118–123, 2019, the 2nd International Conference on Sustainable Materials Processing and Manufacturing, SMPM 2019, 8-10 March 2019, Sun City, South Africa. [Online]. Available: https://doi.org/10.1016/j.promfg.2019.05.013
[35] A. Allouhi, Y. Agrouaz, M. Benzakour Amine, S. Rehman, M. Buker, T. Kousksou, A. Jamil, and A. Benbassou, “Design optimization of a multi-temperature solar thermal heating system for an industrial process,” Applied Energy, vol. 206, pp. 382–392, 2017. [Online]. Available: https://doi.org/10.1016/j.apenergy.2017.08.196
[36] F. B. Tilahun, R. Bhandari, and M. Mamo, “Design optimization and control approach for a solar-augmented industrial heating,” Energy, vol. 179, pp. 186–198, 2019. [Online]. Available: https://doi.org/10.1016/j.energy.2019.04.142
[37] R. R. Milczarek, J. J. Ferry, F. S. Alleyne, C. W. Olsen, D. A. Olson, and R. Winston, “Solar thermal drum drying performance of prune and tomato pomaces,” Food and Bioproducts Processing, vol. 106, pp. 53–64, 2017. [Online]. Available: https://doi.org/10.1016/j.fbp.2017.08.009
[38] P. K. Ktistis, R. A. Agathokleous, and S. A. Kalogirou, “Experimental performance of a parabolic trough collector system for an industrial process heat application,” Energy, vol. 215, p. 119288, 2021. [Online]. Available: https://doi.org/10.1016/j.energy.2020.119288
[39] M. H. Rittmann-Frank, J. Möllenkamp, M. Caflisch, and A. Häberle, “Evaluation of solar process heat systems in Switzerland,” AIP Conference Proceedings, vol. 2033, no. 1, p. 150005, 2018. [Online]. Available: https://doi.org/10.1063/1.5067158
[40] A. Castro, J. a. P. Cardoso, L. F. Mendes, P. Azevedo, and J. a. F. Mendes, “Pre-heating boiler feedwater for expanded cork agglomerate production using a parabolic trough system,” AIP Conference Proceedings, vol. 2033, no. 1, p. 150002, 2018. [Online]. Available: https://doi.org/10.1063/1.5067155
[41] M. Ghazouani, M. Bouya, M. Benaissa, K. Anoune, and M. Ghazi, “Thermal energy management optimization of solar thermal energy system based on small parabolic trough collectors for bitumen maintaining on heat process,” Solar Energy, vol. 211, pp. 1403–1421, 2020. [Online]. Available: https://doi.org/10.1016/j.solener.2020.10.074
[42] Suyanto, R. Hantoro, A. Suharto, R. Saleh, and T. D. Reynaldi, “A review of linear Fresnel reflector technology for heating sulphur liquid in nickel processing industry,” AIP Conference Proceedings, vol. 2088, no. 1, p. 020034, 2019. [Online]. Available: https://doi.org/10.1063/1.509528
[43] A. Buscemi, D. Panno, G. Ciulla, M. Beccali, and V. Lo Brano, “Concrete thermal energy storage for linear Fresnel collectors: Exploiting the south mediterranean’s solar potential for agri-food processes,” Energy Conversion and Management, vol. 166, pp. 719–734, 2018. [Online]. Available: https://doi.org/10.1016/j.enconman.2018.04.075
[44] M. Biencinto, R. Bayón, L. González, R. Christodoulaki, and E. Rojas, “Integration of a parabolic-trough solar field with solid-solid latent storage in an industrial process with different temperature levels,” Applied Thermal Engineering, vol. 184, p. 116263, 2021. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2020.116263
[45] A. K. Sharma, C. Sharma, S. C. Mullick, and T. C. Kandpal, “Financial viability of solar industrial process heating and cost of carbon mitigation: A case of dairy industry in India,” Sustainable Energy Technologies and Assessments, vol. 27, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1016/j.seta.2018.03.007
[46] O. May Tzuc, A. Bassam, L. J. Ricalde, O. Jaramillo, M. Flota-Bañuelos, and M. Escalante Soberanis, “Environmental-economic optimization for implementation of parabolic collectors in the industrial process heat generation: Case study of Mexico,” Journal of Cleaner Production, vol. 242, p. 118538, 2020. [Online]. Available: https://doi.org/10.1016/j.jclepro.2019.118538
[47] F. Cortés, M. Ibarra, F. Moser, I. Muñoz, A. Crespo, and C. Murray, “Techno-economical evaluation of parabolic trough collectors systems for steam processes in the Chilean industry,” AIP Conference Proceedings, vol. 2033, no. 1, p. 150003, 2018. [Online]. Available: https://doi.org/10.1063/1.5067156
[48] N. E. Laadel, H. Agalit, A. Mouaky, and E. G. Bennouna, “Potential of solar heat integration in medium temperature industrial processes in Morocco,” AIP Conference Proceedings, vol. 2126, no. 1, p. 150005, 2019. [Online]. Available: https://doi.org/10.1063/1.5117661
[49] C. Brunner, B. Muster-Slawitsch, A. Grubbauer, J. Koschikowski, I. Oller, C. Sattler, K. Hennecke, D. Krüger, M. Duke, and C. Ozansoy, Solar Energy in Industrial Water and Wastewater management. IEA Solar Heating & Cooling Programme, 2018. [Online]. Available: https://bit.ly/3BNw9kH
[50] A. Frein, M. Motta, M. Berger, and C. Zahler, “Solar DSG plant for pharmaceutical industry in Jordan: Modelling, monitoring and optimization,” Solar Energy, vol. 173, pp. 362–376, 2018. [Online]. Available: https://doi.org/10.1016/j.solener.2018.07.072
[51] S. K. Verma, K. Sharma, N. K. Gupta, P. Soni, and N. Upadhyay, “Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector,” Energy, vol. 194, p. 116853, 2020. [Online]. Available: https://doi.org/10.1016/j.energy.2019.116853
[52] N. R. Peralta and P. Gleckman, “The engineering design of a high-performance parabolic trough collector using lumber for the support structure,” Solar Energy, vol. 191, pp. 382–399, 2019. [Online]. Available: https://doi.org/10.1016/j.solener.2019.08.038
[53] Solar Payback. (2019) Mapa mundial de proveedores ship. [Online]. Available: https: //bit.ly/3zRXZvJ
[54] G. Quiñones, C. Felbol, C. Valenzuela, J. M. Cardemil, and R. A. Escobar, “Analyzing the potential for solar thermal energy utilization in the Chilean copper mining industry,” Solar Energy, vol. 197, pp. 292–310, 2020. [Online]. Available: https://doi.org/10.1016/j.solener.2020.01.009
[55] T. Jia, J. Huang, R. Li, P. He, and Y. Dai, “Status and prospect of solar heat for industrial processes in China,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 475–489, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2018.03.077
[56] H. Ortega, Energía solar térmica para procesos industriales en México. Estudio base de mercado. Comisión Nacional para el Uso Eficiente de la Energía (CONUEE), Asociación Nacional de Energía Solar (ANES), Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 2018. [Online]. Available: https://bit.ly/3l0qa5o
[57] T. Hove, “A thermo-economic model for aiding solar collector choice and optimal sizing for a solar water heating system,” in Africa-EU Renewable Energy Research and Innovation Symposium 2018 (RERIS 2018), M. Mpholo, D. Steuerwald, and T. Kukeera, Eds. Cham: Springer International Publishing, 2018, pp. 1–19. [Online]. Available: https://doi.org/10.1007/978-3-319-93438-9_1
[58] I. Lillo-Bravo, E. Pérez-Aparicio, N. Sancho-Caparrini, and M. A. Silva-Pérez, “Benefits of medium temperature solar concentration technologies as thermal energy source of industrial processes in Spain,” Energies, vol. 11, no. 11, p. 2950, 2018. [Online]. Available: https://doi.org/10.3390/en11112950
[59] BCE. (2021) Consulta por monedas extranjeras. Banco Central del Ecuador. [Online]. Available: https://bit.ly/3h9OS2a
[60] IEA. (2020) Tracking industry 2020. International Energy Agency, Paris. [Online]. Available: https://bit.ly/3neCjpU
[61] C. McMillan, C. Schoeneberger, J. Zhang, P. Kurup, E. Masanet, R. Margolis, S. Meyers, M. Bannister, E. Rosenlieb, and W. Xi, Opportunities for Solar Industrial Process Heat in the United States. National Renewable Energy Laboratory. NREL/TP-6A20-7760, 2021. [Online]. Available: https://bit.ly/3zYSsDG
[62] A. K. Sharma, C. Sharma, S. C. Mullick, and T. C. Kandpal, “Ghg mitigation potential of solar industrial process heating in producing cotton based textiles in india,” Journal of Cleaner Production, vol. 145, pp. 74–84, 2017. [Online]. Available: https://doi.org/10.1016/j.jclepro.2016.12.161
[63] A. Kylili, P. A. Fokaides, A. Ioannides, and S. Kalogirou, “Environmental assessment of solar thermal systems for the industrial sector,” Journal of Cleaner Production, vol. 176, pp. 99–109, 2018. [Online]. Available: https://doi.org/10.1016/j.jclepro.2017.12.150
[64] C. Brunner, B. Muster-Slawitsch, S. Meitz, and E. Frank, Solar Heat Integrations in Industrial Processes. IEA Solar Heating and Cooling Technology Collaboration Programme, 2020. [Online]. Available: https://bit.ly/3BNG8qb
[65] IEA, Energy Technology Perspectives 2020. International Energy Agency, 2020. [Online]. Available: https://bit.ly/3tqcep8