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Abstract Resumen
The classification of thermal images is a key aspect
in the industrial sector, since it is usually the starting
point for the detection of faults in electrical equip-
ment. In some cases, this task is automated through
the use of traditional artificial intelligence techniques,
while in others, it is performed manually, which can
lead to high rates of human error. This paper presents
a comparative analysis between eleven transfer learn-
ing architectures (AlexNet, VGG16, VGG19, ResNet,
DenseNet, MobileNet v2, GoogLeNet, ResNeXt, Wide
ResNet, MNASNet and ShuffleNet) through the use
of fine-tuning, in order to perform a binary classifi-
cation of thermal images in an electrical distribution
network. For this, a database with 815 images is avail-
able, divided using the 60-20-20 hold-out technique
and cross-validation with 5-Folds, to finally analyze
their performance using Friedman test. After the ex-
periments, satisfactory results were obtained with
accuracies above 85 % in 10 of the previously trained
architectures. However, the architecture that was not
previously trained had low accuracy; with this, it is
concluded that the application of transfer learning
through the use of previously trained architectures
is a proper mechanism in the classification of this
type of images, and represents a reliable alternative
to traditional artificial intelligence techniques.

La clasificación de imágenes térmicas es un aspecto
clave en el sector industrial, debido a que suele ser el
punto de partida en la detección de fallos en equipos
eléctricos. En algunos casos, esta tarea se automa-
tiza mediante el uso de técnicas tradicionales de in-
teligencia artificial, mientras que en otros, es reali-
zada de manera manual, lo cual puede traer consigo
altas tasas de error humano. Este artículo presenta
un análisis comparativo entre once arquitecturas de
transfer learning (AlexNet, VGG16, VGG19, ResNet,
DenseNet, MobileNet v2, GoogLeNet, ResNeXt, Wide
ResNet, MNASNet y ShuffleNet) mediante el uso de
fine-tuning, con la finalidad de realizar una clasifi-
cación binaria de imágenes térmicas en una red de
distribución eléctrica. Para ello, se dispone de una
base de datos con 815 imágenes, divididas mediante
la técnica tipo hold-out 60-20-20 y validación cruzada
con 5-folds, para finalmente analizar su rendimiento
mediante el test de Friedman. Luego de los experi-
mentos, se obtuvieron resultados satisfactorios con
exactitudes superiores a 85 % en diez de las arqui-
tecturas previamente entrenadas. Sin embargo, la
arquitectura que no se entrenó previamente presentó
una exactitud baja; concluyéndose que la aplicación
de transfer learning mediante el uso de arquitecturas
previamente entrenadas es un mecanismo adecuado
en la clasificación de este tipo de imágenes, y re-
presenta una alternativa confiable frente a técnicas
tradicionales de inteligencia artificial.
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1. Introduction

At present, artificial intelligence (AI) is a booming
discipline that has redefined many of the processes
carried out in industry, showing very diverse applica-
tions, which include object recognition through arti-
ficial vision, voice recognition and synthesis, reading
comprehension, translation systems, language compre-
hension, etc. [1]. AI is not a new term, since it has
existed for many years; however, what has changed in
recent times is the computational power, which can
be used to compute much more complex models in
shorter time [2]. AI is defined as a set of algorithms
whose purpose is creating machines that emulate the
capabilities of human beings. Seen in another way,
it is a software that may be trained for recognizing
patterns and performing predictions, in some cases
more accurately than human beings [3]. Terms such as
Machine Learning (ML) and Deep Learning are found
within AI [4].

Machine Learning (ML) or automatic learning, is
a branch of AI that seeks generalizing behaviors of
a set of input data, i.e., their objective is to predict
future behaviors based on finding patterns within big
data sets [5]. Likewise, Deep Learning (DL) is a part of
Machine Learning [6], whose objective is that systems
automatically mimic the behavior and reasoning of
people; in other words, that humans are involved as
little as possible in the process. This objective is based
on the use of artificial neural networks (ANN), which
simulate the synapsis of the human brain [7]. Figure 1
displays the traditional structure of an artificial neural
network, which includes the input layer, the hidden
layers and the output layer.

Figure 1. Structure of an artificial neural network [8]

In addition, it should be pointed out that within
ANNs there are the convolutional neural networks
(CNNs), which are an advanced and high potential
type of the classical artificial neural network model,
designed to address more complex problems, and gen-
erally used in image classification [9].

Regarding data separation, the holdout technique
[10] is one of the most commonly used, and consists of
dividing the data in three subsets: 60 % for training, 20
% for validation and the remaining 20 % for testing the

model, as observed in Figure 2. However, this type of
technique cannot be considered enough to evaluate the
performance of the models, and consequently litera-
ture suggests to apply a k-folds cross-validation [11] by
randomly dividing the data set in k subsets, of which
k-1 are used to train the model, and one to validate
it. This mechanism must be repeated k times in each
iteration, using different validation subsets, as seen
in Figure 3. Finally, it is recommended to perform a
statistical comparison of the results of each model [12],
by means of parametric techniques such as ANOVA,
or non-parametric ones such as Friedman Test [13].

Figure 2. Holdout technique for separation

Figure 3. K-folds cross-validation

Some research works show that the application of
artificial intelligence is useful in the electricity sec-
tor through the use of thermal images to automate
their classification [14]. This type of images is cap-
tured by means of infrared cameras, thus involving
another relevant term: thermography, a technique that
enables capturing infrared radiation of the electromag-
netic spectrum, whose main advantage is not requiring
physical contact with the object or piece under study,
with which machinery operation does not stop [15].
Figure 4 shows an example of the thermal image of a
high-voltage equipment captured from the ground.
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Figure 4. Thermal image of a high-voltage equipment [15]

Hereafter, the most relevant research works about
the use of traditional artificial intelligence techniques
for classification of thermal images are described. A
clear example is the proposal of an automatic recogni-
tion system for classifying thermographic images of an
electric power distribution network [16], where it was
implemented a CNN and the JSEG or J segmentation
algorithm, which consists of reducing the number of
colors and their fusion based on the similarity of the
regions of the image [17]. Similarly, a research work
carried out in the Chongqing Technology Department,
China [18], addresses computer vision using infrared
thermal images captured without disturbing the oper-
ation of electrical substations. For this purpose, they
trained a multi-layer perceptron (MLP), which is a
type of artificial neural network constituted by various
layers of intermediate or hidden neurons, used for solv-
ing problems that cannot be linearly separated [19].

A semiautomatic approach is proposed in [20] to
evaluate the thermal condition of the electrical in-
stallations of a building through the analysis of in-
frared images, using a multilayer perceptron (MLP)
and principal components analysis (PCA); the latter
is a statistical technique whose purpose is simplifying
the complexity of the sample through the selection
or extraction of the most representative features of
the input data [21]; whereas, an intelligent diagnosis
method is described in [22], for classifying different
conditions of electrical equipment using data obtained
from infrared images using the K-means algorithm,
which is in charge of grouping the images of electrical
equipment to determine and classify clusters or groups
with similar features [23].

The aforementioned research works are focused on
training a model from scratch or in the traditional way
for a specific scenario; however, at present there are
techniques that simplify this process, such as transfer
learning (TF), which is part of deep learning and con-
sists of using a pretrained network, i.e., reusing the
architecture and weights of a model trained with great
amounts of input data, and apply them to different

scenarios with other data sets, seeking to carry out
classifications more rapidly and using lower computa-
tional load [24]. An example of the databases used to
train these models is ImageNet, which contains more
than fourteen millions of images [25].

One of the paradigms of transfer learning is fine-
tuning the model, which seeks to adapt it to a new
application domain [26]; for this purpose, it is taken
the pretrained model and some parameters such as the
learning rate are varied, with the objective of achieving
significant improvements in the predictions [27].

The literature review reveals that there are differ-
ent transfer learning applications in sectors such as
(i) health, through the classification of pathologies in
neurological images [28], detection of objects such as
guns or knives in X-ray images [29] or cervical [30],
among others. (ii) In the agroindustry, as observed
in [31], which presents a comparison of the ResNet,
Googlenet, VGG16, Alexnet and DenseNet transfer
learning architectures, with the purpose of classifying
a data set that contains images of flowers, demonstrat-
ing that the pretrained VGG16 architecture obtains
accuracy levels larger than the others. (iii) In the food
sector, as described in [32], where it is indicated that
CNNs are the most frequently used image classification
techniques; this research is focused in classifying food
with the purpose of obtaining a healthier lifestyle, for
which they use a database with 500 images, in addi-
tion to the pretrained architectures VGG16, VGG19,
ResNet and InceptionV3, with the latter achieving the
best results.

However, when studying applications of thermal
images and transfer learning techniques in the elec-
tric sector, it is found a scarcity of them. One of the
most representative is the case of [33], where it is pro-
posed a mechanism for classifying thermal images of
rotor bearing systems; for this purpose, they modify a
convolutional neural network with the use of transfer
learning, nevertheless they do not specify the TF archi-
tecture used. On the other hand, in [34] it is sought to
automate the supervision of the state of industrial ma-
chinery through the use of thermal images and a CNN,
indicating that a drawback of the latter is the need for
great amounts of data for training; as a consequence,
it is proposed the use of the VGG16 architecture as a
method for reusing layers of the neural network.

Based on what has been pointed out in previous
paragraphs, there is an evidence that the advantages
of transfer learning are not being fully exploited in the
electrical sector, since there is no study that applies
different architectures with the same data set, and
thus the objective of the present study is to propose
an alternative to the traditional use of artificial intelli-
gence techniques through the analysis of eleven transfer
learning architectures and the self-tuning paradigm,
applied to the binary classification of thermal images
in an electric power distribution network.
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2. Materials and methods

Figure 5 represents the methodology followed in this
research, which starts with the collection of field data
through the capture of thermal images; afterwards, it
is carried out the design of a base architecture which
includes different pretrained transfer learning architec-
tures, each of which is trained and tested to finally
compare the results obtained. All this process was con-
ducted with the help of the Google Collaboratory on-
line service, through the use of Jupyter Notebooks [35].

Figure 5. Methodology

2.1. Database

The database used in this work corresponds to 815
thermal images, belonging to a Peruvian electric power
distribution company, classified in two categories, elec-
tric substations and transmission lines. This data set is
larger than the ones used in [18], [20], [22], [36] and [37].
The images were captured using the TP8S infrared
camera, whose specifications are seen in Table 1.

Table 1. Technical specifications of the TP8S camera [38]

Feature Description
Type of detector FPA (384 × 288 pixels, 35 m)
Spectral range 8-14 m

Thermal sensitivity 0.08 °C a 130 °C
Field of vision 22° × 16° / 35 mm
Electronic focus Automatic or motorized

Zoom Continuous from ×1 a ×10

The procedure that the electric distribution com-
pany has been executing includes five stages which are
described in detail in the following and are shown in
Figure 6. (i) First, an external company is hired for
the capture of thermal images, specifically transmis-
sion lines and electric substations, which is carried out
weekly or monthly. (ii) The service company delivers
all images to a specialist certified in thermal image
analysis. (iii) The specialist should manually classify

the images and divide them between transmission lines
or equipment in electric substations, since they require
different types of analyses. (iv) Then the specialist
proceeds to analyze each image to determine, based
on knowledge and experience, if there is an evidence of
failures due to the detection of a hotspot. (v) Finally,
if the specialist detects a hotspot, he/she prepares
the corresponding report and takes the appropriate
corrective actions.

The present study focused in automating stage 3
of the process using transfer learning techniques.

Figure 6. Process for classifying the thermal images

The images have a resolution of 384 × 288 pix-
els. Figure 7 shows some examples of typical images
corresponding to transmission lines equipment, and
Figure 8 shows some images corresponding to electri-
cal substations, which represent the two classes of the
model.

Figure 7. Typical image of transmission lines equipment

Figure 8. Typical image of electrical substations equip-
ment

2.2. Data set

A total of 815 thermal images were used for carry-
ing out the experiments; these images were divided
in three data sets with a split of 60-20-20, known as
holdout separation (See Figure 2). The 60 % of the
images were considered as training data and 20 % as
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validation data, while the remaining 20 % includes the
data for testing the model (see Table 2), i.e., that the
model is trained and validated in parallel and finally
tested with new images that have not been previously
considered. It is indicated in [39] that the models that
generalize appropriately show similar accuracy and
loss metrics in training and validation, thus preventing
overfitting.

Table 2. Distribution of the data sets

Class Train Validation Test
Line 206 68 68

Substation 283 95 95
TOTAL 489 163 163

2.3. Architectures

Eleven architectures of previously trained models were
considered in this study, through the use of the TorchVi-
sion package, which is part of PyTorch, an open-source
automatic learning library; as indicated in [40], the
PyTorch models are faster and easier to implement
and train. The architectures used were:

2.3.1. AlexNet

Convolutional neural network constituted by eight lay-
ers [41], five of which are max-pooling, and the three
remaining are fully connected. This architecture was
trained with the ReLU (Rectified Linear Units) ac-
tivation function and the ImageNet database. As it
is observed in Figure 9, the input to the network are
images of 224 × 224 pixels, which are transformed in
each of the layers up to the obtaining the output, the
classification of one thousand categories.

Figure 9. AlexNet architecture [41]

2.3.2. VGG16

Network constituted by 16 layers, which was also
trained with the ImageNet database [42], assuming
improvements compared to the AlexNet architecture
since it replaces the large kernels filters by a set of 3 ×
3 filters. The VGG16 architecture is shown in Figure
10.

Figure 10. VGG16 architecture [42]

2.3.3. VGG19

Convolutional neural network constituted by 16 convo-
lutional layers [43], three fully-connected, five MaxPool
and one SoftMax, with an approximate of 143 million
of parameters. The VGG19 architecture is shown in
Figure 11.

Figure 11. VGG19 architecture [43]

2.3.4. ResNet

Architecture that seeks that the increase of layers is
performed different to the traditional way [44], and
thus it adds a residual connection with an identity
layer that is directly passed to the next layer, consider-
ably improving the training of the model. A traditional
block of the ResNet architecture is shown In Figure
12.

2.3.5. DenseNet

CNN in which every layer obtains additional inputs
from all previous layers and passes its own feature
maps to all further layers [45], i.e., that all outputs
from previous layers are concatenated with further
layers, seeking to have a smaller number of parameters
and an accuracy greater than the one achieved with
networks such as ResNet. The DenseNet architecture
is shown in Figure 13.
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2.3.6. GoogLeNet

Neural network developed by Google with the purpose
of classifying images. This CNN is based on the Incep-
tion architecture [46], and thus it uses modules that
give the possibility of choosing among different sizes of
convolutional filter in each of the blocks. An example
of the Inception module is shown in Figure 14.

Figure 12. Block of the ResNet architecture [44]

Figure 13. Block of the DenseNet architecture [45]

Figure 14. Inception module with reduced dimension [47]

2.3.7. MobileNet v2

is based on the use of depthwise separable convolutions
and uses an inverted residual structure [48], where the
input and output of the residual block are thin bot-
tleneck layers opposed to traditional residual models
that use expanded representations in the input, as it
is shown with detail in Figure 15.

Figure 15. Blocks of the MobileNet v2 architecture [48]

2.3.8. ResNeXt

A variant of ResNet that seeks to increase the num-
ber of paths or routes parallel to the residual connec-
tion [49], i.e., that ResNeXt is a CNN with multiple
branches, as seen in Figure 16, with shows a block
with a cardinality of 32.

Figure 16. Block of the ResNeXt architecture [49]

2.3.9. Wide ResNet

A neural network that represents a variation to the tra-
ditional ResNet architecture [50], reducing the depth
of the model and increasing the width of the residual
networks. The characteristic blocks of this CNN are:
basic, bottleneck, basic-wide and wide-dropout. Figure
17 shows the details of the latter.

Figure 17. Wide-dropout block [50]
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2.3.10. MNASNet

Is a convolutional neural network that, similar to the
MobileNet [51], is designed and optimized for mobile
devices and seeks that the model obtains an equilib-
rium between latency and accuracy. Figure 18 shows
an example of the design of a convolutional layer with
a 5 × 5 kernel.

Figure 18. Convolutional layer of MNASNet [51]

2.3.11. ShuffleNet

A CNN whose main component is a new channel reor-
ganization operation [52], seeking that the information
flows more easily in them. Figure 19 shows a ShuffleNet
unit, that is a central element within this architecture.

Figure 19. ShuffleNet unit [52]

At last, Table 3 shows information provided in the
TorchVision [53] web site; it summarizes the features of
these architectures related with the size in megabytes
and the number of parameters used in training the
model, highlighting that ShuffleNet is the only archi-
tecture that currently does not allow the use of the
pretraining configuration parameter, i.e., its size is
zero megabytes.

Table 3. Features of the architectures used

N° Arquitecture Size Parameters
(mb) (millions)

1 AlexNet 233 61.1
2 VGG16 528 138.36
3 VGG19 548 143.67
4 ResNet 230 60.19
5 DenseNet 77.4 20.01
6 GoogLeNet 49.7 13
7 MobileNet v2 13.6 3.5
8 ResNeXt 340 44.55
9 Wide ResNetx 243 126.89
10 MNASNet 16.9 4.38
11 ShuffleNet 0* 7.39

2.4. Model

Figure 20 shows the design of the base architecture
to be used. The first section corresponds to the in-
put layer, in which images of 328 × 288 pixels were
included. Afterwards, the eleven architectures were
added in the «Transfer learning model architecture»
section, highlighting that the classification layer of
each of them was edited to perform a binary classifica-
tion, since they were originally designed to classify an
approximate of one thousand images. At last, there is
the output layer that corresponds to the predictions
of the model.

Figure 20. Base architecture

Since no research works were found that compare
this number of architectures applied to thermography,
and with the purpose of carrying out a fair comparison
between the models, the same hyperparameters were
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considered in all tests conducted. They were selected
based on empirical experiments, as proposed in [54–56],
based on the values in Table 4. According to the results
of the initial experiments, there is a breaking point
at approximately epoch 20, in which the training and
validation curves show a separation trend, evidencing
problems of overfitting (see Figure 21). It is concluded
that the models obtain better results according to the
hyperparameters shown in Table 5, and these data
were used to execute the remaining tests.

Table 4. Empirical experiments with hyperparameters

Hyperparameter Value
Learning rate 10−2, 10−3, 10−4 y 10−5

Images per Batch 16, 32, 64 y 128
Number of epochs 5, 10, 20, 30, 50 y 100

Cost function Cross Entropy, Multi Margin Loss y MSE
Optimizer Adagrad, Adam, Adamax, RMSprop y SGD

Figure 21. Experiment with 100 epochs

Table 5. Final configuration of hyperparameters

Hyperparameter Value
Learning rate 0.0001

Images per Batch 32
Number of epochs 20

Cost function Multi Margin Loss
Optimizer Adam

Models improved their performance when the input
data is normalized calculating the standard deviation
and the mean of the data sets. In addition, the data
set (815 images) is larger than in research works such
as [18], [20], [22], [36] and [37], in which the maximum
number of images used is 500. The literature suggests
as a good practice the application of techniques that
contribute to improve the quality of the training, and
for this reason it was used Data Augmentation [57,58]
through the random horizontal flip, random vertical

flip and random rotation transformations. Figure 22
shows some results of the transformations used.

Figure 22. Images with data augmentation

3. Results and discussion

The eleven architectures were trained using the values
of Table 5, obtaining the accuracy results shown in
Table 6. On the other hand, Table 7 shows the loss
rate for each architecture. Based on the results, it is
seen that DenseNet yields a higher accuracy, while
VGG16 shows the lowest loss rate. An additional point
to be considered is that ShuffleNet yields the worst
results since it was the only architecture without pre-
training, evidencing that the pretrained architectures
yield better results.

Table 6. Accuracy of the architectures

Arquitecture Train Validation Test
DenseNet 96.52 92.02 98.15
VGG19 93.66 90.18 96.31

Wide ResNetx 94.68 90.18 96.31
MobileNet v2 94.68 88.95 95.70

VGG16 95.91 91.41 95.09
ResNeXt 94.06 92.02 95.09
ResNet 93.66 84.66 94.47
AlexNet 95.50 91.41 93.86

GoogLeNet 95.09 88.95 93.86
MNASNet 71.41 69.93 79.14
ShuffleNet 62.78 68.09 76.68

Table 7. Loss rate of the architectures

Arquitecture Train Validation Test
VGG16 0.130571 0.195825 0.106733
VGG19 0.175259 0.257767 0.124051

MobileNet v2 0.179914 0.283927 0.124497
DenseNet 0.134446 0.198757 0.126488
AlexNet 0.127838 0.226890 0.134585

GoogLeNet 0.205683 0.242438 0.164706
ResNet 0.220600 0.295843 0.175979
ResNeXt 0.215153 0.241967 0.179627

Wide ResNetx 0.246464 0.271462 0.19046
MNASNet 0.507049 0.529690 0.395779
ShuffleNet 0.647315 0.579723 0.524782
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Research works such as [59], point out that the
accuracy and loss rate metrics exhibit a high degree
of subjectivity, and consequently it is proposed the
use of statistical techniques to evaluate the results of
the architectures, specifically F1-score, whose calcula-
tion mechanism is observed in (1). Precision and recall
are obtained from (2) and (3), respectively, where TP
represents true positives, FP false positives and FN
the false negatives. The results are shown in detail
in Table 8, demonstrating that the VGG16 architec-
ture achieves the first place with the highest F1-score,
corresponding to 95.11 %.

F1score = 2 × precision × recall

precision + recall
(1)

Precision = TP

TP + FP
(2)

Precision = TP

TP + FN
(3)

Table 8. Comparison between architectures: F1-score

Arquitecture Precision Recall F1-score
VGG16 96.12 94.12 95.11
ResNeXt 92.86 93.79 93.32

MobileNet v2 93.62 92.54 93.08
ResNet 92.36 93.48 92.92
VGG19 92.25 92.85 92.55
DenseNet 93.48 91.59 92.53

Wide ResNetx 93.13 91.8 92.46
AlexNet 93.03 89.91 91.44

GoogLeNet 92.11 89.39 90.73
MNASNet 85.71 86.11 85.91
ShuffleNet 29.14 50.00 36.82

The holdout separation mechanism may not be
enough when comparing different models, and with
the purpose of eliminating this source of variability
other experiments were conducted by means of 5-folds
cross-validation (see Figure 23) as suggested in [60],
followed by a statistical comparison of the results of
each model, as it is performed in [12]. The results of
the cross-validation may be observed in Table 9.

Figure 23. 5-folds cross validation

Table 9. Results – 5-folds cross validation

Arquitecture Fold 1 . . . Fold 5 Average
VGG16 93.87 . . . 98.16 96.81
VGG19 93.87 . . . 98.77 95.83
AlexNet 90.18 . . . 99.38 95.34
ResNeXt 94.48 . . . 98.16 94.6
DenseNet 88.34 . . . 98.16 94.36

MobileNet v2 90.18 . . . 96.32 93.99
ResNet 93.87 . . . 95.09 93.74

GoogLeNet 88.96 . . . 93.86 93.5
MNASNet 86.51 . . . 98.15 92.52

Wide ResNetx 84.66 . . . 94.48 89.82
ShuffleNet 68.09 . . . 72.39 70.06

Regarding the statistical tests to evaluate the per-
formance of the architectures, first every model was
executed 30 times, as it was done in [12]. Afterwards,
residue and normal probability analyses were carried
out; according to the former, it is evidenced that it
might be applied a parametric test since the residues
exhibit a similar dispersion (see Figure 24). However,
when analyzing the normal probability plot to verify
that the residues approximately fit a normal distri-
bution, it is observed that there are data outside the
confidence interval, with a Shapiro-Wilk coefficient
equal to 0.932994 and a p-value equal to 0 (see Figure
25). Similarly, it was carried out a data transformation
using the square root, but these are still outside the
confidence interval.

Since populations do not fit a normal distribution,
it cannot be applied a parametric test; for this reason,
it is necessary to use a non-parametric test, specifi-
cally Friedman test, in which it is not required to meet
the normality or homoestacity (equality of variances)
condition. By means of this analysis shown in Table
10, it is obtained a p-value equal to zero, i.e., there
is a difference between the populations, showing that
VGG16 is better than the other architectures.

Figure 24. Residues plot
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Figure 25. Normal probability plot

Table 10. Statistical results –Friedman test

Ranking Arquitecture Average range
1 VGG16 10.68
2 AlexNet 9.28
3 VGG19 9.28
4 DenseNet 6.48
5 MobileNet v2 6.32
6 ResNeXt 6.06
7 ResNet 5.78
8 GoogLeNet 5.16
9 MNASNet 3.96
10 Wide ResNetx 2.00
11 ShuffleNet 1.00

This same result is evidenced in the analysis of
means, in which it is seen that the confidence interval
that has been constructed both with the Fisher LSD
(Figure 26) and Tukey HSD (Figure 27) methods, is
better for the case of VGG16 since it does not inter-
sect the corresponding to other architectures. In the
case of the analysis of medians it is observed that the
VGG16 architecture is better than most of the others,
but it shows a small intersection with the AlexNet and
VGG19 architectures (see Figure 28).

Figure 26. Plot of means – Fisher LSD

Figure 27. Plot of means – Tukey HSD

Figure 28. Plot of medians

In addition, it was performed the multiple compar-
ison analysis by means of the multiple range test (see
Table 11), where if the “X” of homogeneous groups are
in the same column the architectures behave similarly,
observing that VGG16 is better and different than the
other architectures.

Table 11. Multiple range test

Arquitecture Mean Homogeneous groups
ShuffleNet 686.560 X

Wide ResNetx 881.820 X
MNASNet 912.540 X
GoogLeNet 919.068 XX
ResNet 923.080 X
ResNeXt 923.704 X

MobileNet v2 924.816 X
DenseNet 925.336 X
AlexNet 940.500 X
VGG19 940.652 X
VGG16 953.756 X

The present paper is not intended to obtain a «bet-
ter» model but presenting an alternative mechanism
in front of traditional artificial intelligence techniques.
However, the results corresponding to the model with
better performance, i.e., VGG16, are presented for aca-
demic purposes; the original architecture of this model
is seen in Figure 10, and the resulting final architecture
is shown with details in Figure 29.
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It is seen in this architecture that the input is rep-
resented by images of 328 × 288 pixels, which enter
the VGG16 pretrained convolutional neural network,
constituted by thirteen convolutional layers followed
by three fully connected layers, the first two of which
have 4096 channels and the last one 1000 channels;
therefore, this was edited to be able to perform a
binary classification (2 channels). The hidden layers
use the ReLU activation function and besides differ-
ent 3 × 3 kernels. Finally, the output corresponds to
the classification between both classes, i.e., lines and
substations.

Figure 29. Proposed transfer learning architecture for
classifying thermal images

Precisions of 95.91 % and 91.41 % in training and
validation, respectively, were obtained with this model
(Figure 30). This architecture was tested with new
images belonging to the test data set, obtaining an
accuracy of 94.43 % for the category lines, and 92.81
% for substations. This may be seen in the confusion
matrix shown in Figure 31.

The accuracy of the model was graphically repre-
sented through the receiver operating characteristic
(ROC) curve, whose area under the curve (AUC) shows
a value of 94 %, which indicates a high performance
of the proposed architecture in the classification of
thermal images (see Figure 32).

Figure 30. Accuracy: training and validation of the model

Figure 31. Confusion matrix

Figure 32. ROC curve

At last, Figure 33 shows some examples of the
predictions by the model. The real classification is
represented in the left side of the title of each image,
and in the right side the one obtained by the model.

Figure 33. Predictions by the model
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4. Conclusions

In this work, it is analyzed the performance of eleven
pretrained networks that use the transfer learning
paradigm based in fine-tuning the model, for binary
classification of thermal images. The final objective
is not finding a «better» model, but presenting alter-
natives to traditional artificial intelligence techniques,
seeking to save computational time and load.

The models yield accuracies between 79.14 % and
98.15 %, and values of F1-score between 85.91 % and
95.11 % in the pretrained architectures; these results
are an indication that the use of transfer learning tech-
niques represents a reliable alternative as a mechanism
for classifying thermal images in the electric sector;
however, it is recommended to perform a specific anal-
ysis in each particular case of application.

The use of data augmentation, transformations and
normalization of the images, are important aspects to
improve the performance of the model; whereas the
division of the data set in the training, validation and
test subsets using the holdout technique helped to pre-
vent overfitting, generalize the model and, therefore,
carry out more accurate predictions. However, with the
purpose of performing a fairer comparison, the study
also included applying a 5-folds cross-validation, and
moreover a statistical analysis by means of Friedman
Test.
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