Rapid Convective Deposition at Nanoscale of Active Composite Materials for the Manufacture of Organic Field-Effect Transistors

Main Article Content

Freddy Del Pozo http://orcid.org/0000-0001-6396-0023
Marta Mas-Torrent https://orcid.org/0000-0002-1586-005X

Abstract

Organic field-effect transistors based on composite materials has been manufactured using the rapid convective deposition technique. The manufacturing was carried out under environmental conditions (air, light and humidity). All manufactured transistors show a typical field-effect behavior with features of a p-type semiconductor, and exhibit field-effect mobilities around 10-2 cm2/V.s, fully comparable with transistors manufactured using thermal evaporation of the same active material. The deposition technique demonstrates that devices may be manufactured with high reproducibility and in all cases with a low threshold voltage of approximately 1V. Therefore, it is demonstrated here that rapid convective deposition can be used to manufacture organic field-effect transistors on large surface areas, showing high reproducibility among devices and high stability at environmental conditions.
Abstract 129 | PDF (Español (España)) Downloads 37 PDF Downloads 42 EPUB (Español (España)) Downloads 1

References

[1] P. K. L. Chan, “The motivation for and challenges to scaling down organic field-effect transistors,” Advanced Electronic Materials, vol. 5, no. 7, p. 1900029, 2019. [Online]. Available: https://doi.org/10.1002/aelm.201900029
[2] S. Riera-Galindo, F. Leonardi, R. Pfattner, and M. Mas-Torrent, “Organic semiconductor/polymer blend films for organic field-effect transistors,” Advanced Materials Technologies, vol. 4, no. 9, p. 1900104, 2019. [Online]. Available: https://doi.org/10.1002/admt.201900104
[3] C. Wang, H. Dong, L. Jiang, and W. Hu, “Organic semiconductor crystals,” Chemical Society Reviews, vol. 47, pp. 422–500, 2018. [Online]. Available: http://dx.doi.org/10.1039/C7CS00490G
[4] M. Fahlman, S. Fabiano, V. Gueskine, D. Simon, M. Berggren, and X. Crispin, “Interfaces in organic electronics,” Nature Reviews Materials, vol. 4, no. 10, pp. 627–650, Oct. 2019. [Online]. Available: https://doi.org/10.1038/s41578-019-0127-y
[5] Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip, and O. D. Jurchescu, “Tutorial: Organic field-effect transistors: Materials, structure and operation,” Journal of Applied Physics, vol. 124, no. 7, p. 071101, 2018. [Online]. Available: https://doi.org/10.1063/1.5042255
[6] M. Mas-Torrent and C. Rovira, “Role of molecular order and solid-state structure in organic field-effect transistors,” Chemical Reviews, vol. 111, no. 8, pp. 4833–4856, 2011, pMID: 21417271. [Online]. Available: https://doi.org/10.1021/cr100142w
[7] K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T. Mori, “Contact resistance of dibenzotetrathiafulvalene-based organic transistors with metal and organic electrodes,” Applied Physics Letters, vol. 92, no. 2, p. 023305, 2008. [Online]. Available: https://doi.org/10.1063/1.2834374
[8] B. Noda, H. Wada, K. Shibata, T. Yoshino, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, and H. Takezoe, “Crystal structures and transistor properties of phenyl-substituted tetrathiafulvalene derivatives,” Nanotechnology, vol. 18, no. 42, p. 424009, sep 2007. [Online]. Available: https://doi.org/10.1088/0957-4484/18/42/424009
[9] M. Mas-Torrent, P. Hadley, S. T. Bromley, X. Ribas, J. Tarrés, M. Mas, E. Molins, J. Veciana, and C. Rovira, “Correlation between crystal structure and mobility in organic fieldeffect transistors based on single crystals of tetrathiafulvalene derivatives,” Journal of the American Chemical Society, vol. 126, no. 27, pp. 8546–8553, 2004, pMID: 15238013. [Online]. Available: https://doi.org/10.1021/ja048342i
[10] M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, and C. Rovira, “Singlecrystal organic field-effect transistors based on dibenzo-tetrathiafulvalene,” Applied Physics Letters, vol. 86, no. 1, p. 012110, 2005. [Online]. Available: https://doi.org/10.1063/1.1848179
[11] T. Chonsut, A. Rangkasikorn, S. Wirunchit, A. Kaewprajak, P. Kumnorkaew, N. Kayunkid, and J. Nukeaw, “Rapid convective deposition; an alternative method to prepare organic thin film in scale of nanometer,” Materials Today: Proceedings, vol. 4, no. 5, Part 2, pp. 6134–6139, 2017, international Conference on Science and Technology of the Emerging Materials (July 27-29, 2016), Pattaya, Thailand. [Online]. Available: https://doi.org/10.1016/j.matpr.2017.06.106
[12] F. G. D. Pozo, S. Galindo, R. Pfattner, C. Rovira, and M. Mas-Torrent, “Deposition of composite materials using a wire-bar coater for achieving processability and air-stability in Organic Field-Effect Transistors (OFETs),” in Organic Field-Effect Transistors XIV; and Organic Sensors and Bioelectronics VIII, I. Kymissis, R. Shinar, L. Torsi, I. McCulloch, and O. D. Jurchescu, Eds., vol. 9568, International Society for Optics and Photonics. SPIE, 2015, pp. 17–22. [Online]. Available: https://doi.org/10.1117/12.2186521
[13] L. J. Richter, D. M. DeLongchamp, and A. Amassian, “Morphology development in solution-processed functional organic blend films: An in situ viewpoint,” Chemical Reviews, vol. 117, no. 9, pp. 6332–6366, 2017, pMID: 28414244. [Online]. Available: https://doi.org/10.1021/acs.chemrev.6b00618
[14] A. Tamayo, S. Riera-Galindo, A. O. F. Jones, R. Resel, and M. Mas-Torrent, “Impact of the ink formulation and coating speed on the polymorphism and morphology of a solution-sheared thin film of a blended organic semiconductor,” Advanced Materials Interfaces, vol. 6, no. 22, p. 1900950, 2019. [Online]. Available: https://doi.org/10.1002/admi.201900950
[15] A. M. Hiszpanski, R. M. Baur, B. Kim, N. J. Tremblay, C. Nuckolls, A. R. Woll, and Y.-L. Loo, “Tuning polymorphism and orientation in organic semiconductor thin films via postdeposition processing,” Journal of the American Chemical Society, vol. 136, no. 44, pp. 15 749–15 756, 2014, pMID: 25317987. [Online]. Available: https://doi.org/10.1021/ja5091035
[16] H. Chung and Y. Diao, “Polymorphism as an emerging design strategy for high performance organic electronics,” Journal of Materials Chemistry C, vol. 4, pp. 3915–3933, 2016. [Online]. Available: http://dx.doi.org/10.1039/C5TC04390E
[17] A. Kyndiah, F. Leonardi, C. Tarantino, T. Cramer, R. Millan-Solsona, E. Garreta, N. Montserrat, M. Mas-Torrent, and G. Gomila, “Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors,” Biosensors and Bioelectronics, vol. 150, p. 111844, 2020. [Online]. Available: https://doi.org/10.1016/j.bios.2019.111844
[18] A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, S. Milita, C. Dionigi, F. Borgatti, A. N. Lazar, F. Biscarini, M. Mas-Torrent, N. S. Oxtoby, N. Crivillers, J. Veciana, C. Rovira, M. Leufgen, G. Schmidt, and L. W. Molenkamp, “The four polymorphic modifications of the semiconductor dibenzo-tetrathiafulvalene,” CrystEngComm, vol. 10, pp. 1899–1909, 2008. [Online]. Available: http://dx.doi.org/10.1039/B810993A
[19] P. A. Bobbert, A. Sharma, S. G. J. Mathijssen, M. Kemerink, and D. M. de Leeuw, “Operational stability of organic field-effect transistors,” Advanced Materials, vol. 24, no. 9, pp. 1146–1158, 2012. [Online]. Available: https://doi.org/10.1002/adma.201104580
[20] M. Mas-Torrent and C. Rovira, “Tetrathiafulvalene derivatives for organic field effect transistors,” Journal of Materials Chemistry, vol. 16, pp. 433–436, 2006. [Online]. Available: http://dx.doi.org/10.1039/B510121B