Design and construction of a batch reactor with external recirculation to obtain biodiesel from residual frying oil under subcritical conditions

Main Article Content

Cristian Fabian Pérez https://orcid.org/0000-0003-4031-5464
Diego Fernando Núñez Núñez http://orcid.org/0000-0001-5248-4084
Herminia del Rosario Sanaguano Salguero https://orcid.org/0000-0002-2885-1515
Luis Fernando Sánchez Quinchuela https://orcid.org/0000-0002-4238-7376

Abstract

A batch reactor was designed and built to obtain biodiesel from frying oil under sub-critical conditions, with the purpose of reducing the reaction time to the minimum possible. The design process is focused on the selection of the material and the verification of its resistance by means of a FEM analysis from a Design of Experiments (DOE). Three levels of pressure, temperature and wall thickness, respectively, and a material categorical factor at two levels were considered. The results obtained were that the appropriate material for manufacturing the reactor is 304 stainless steel with a design safety factor of 1. For constructing the system it was also necessary to select all the complementary components. The final operation tests showed that it is possible to safely obtain the biofuel in the batch reactor with a degree of conversion 88%, in a range of 5 to 8 minutes.
Abstract 365 | PDF (Español (España)) Downloads 227 PDF Downloads 45

References

[1] Y. Ma and Y. Liu, “Chapter 21 - biodiesel production: Status and perspectives,” in Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition), second edition ed., ser. Biomass, Biofuels, Biochemicals, A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, and S. Ricke, Eds. Academic Press, 2019, pp. 503–522. [Online]. Available: https://doi.org/10.1016/B978-0-12-816856-1.00021-X
[2] L. Faba, E. Díaz, and S. Ordóñez, “Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 273–287, 2015. [Online]. Available: https://doi.org/10.1016/j.rser.2015.06.020
[3] J. Xu, G. Xiao, Y. Zhou, and J. Jiang, “Production of biofuels from high-acid-value waste oils,” Energy & Fuels, vol. 25, no. 10, pp. 4638–4642, 2011. [Online]. Available: https://doi.org/10.1021/ef2006723
[4] M. Mohammadi, G. D. Najafpour, H. Younesi, P. Lahijani, M. H. Uzir, and A. R. Mohamed, “Bioconversion of synthesis gas to second generation biofuels: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 9, pp. 4255–4273, 2011. [Online]. Available: https://doi.org/10.1016/j.rser.2011.07.124
[5] F. A. Avellaneda Vargas, “Producción y caracterización de biodiésel de palma y de aceite reclicado mediante un proceso batch y un proceso continuo con un reactor helicoidal,” 2010. [Online]. Available: https://bit.ly/3jqIgdX
[6] Y. Wang, P. L. Shiyi Ou, and Z. Zhang, “Preparation of biodiesel from waste cooking oil via two-step catalyzed process,” Energy Conversion and Management, vol. 48, no. 1, pp. 184–188, 2007. [Online]. Available: https://doi.org/10.1016/j.enconman.2006.04.016
[7] Y. Zhang, M. A. Dubé, D. D. McLean, and M. Kates, “Biodiesel production from waste cooking oil: 2. economic assessment and sensitivity analysis,” Bioresource Technology, vol. 90, no. 3, pp. 229–240, 2003. [Online]. Available: https://doi.org/10.1016/S0960-8524(03)00150-0
[8] S. Zheng, M. Kates, M. Dubé, and D. McLean, “Acid-catalyzed production of biodiesel from waste frying oil,” Biomass and Bioenergy, vol. 30, no. 3, pp. 267–272, 2006. [Online]. Available: https://doi.org/10.1016/j.biombioe.2005.10.004
[9] A. Srivastava and R. Prasad, “Triglyceridesbased diesel fuels,” Renewable and Sustainable Energy Reviews, vol. 4, no. 2, pp. 111–133, 2000. [Online]. Available: https://doi.org/10.1016/S1364-0321(99)00013-1
[10] B. H. Pedro, A. S. John, and G. Cano, “Estudio experimental de las variables que afectan la reacción de transesterificación del aceite crudo de palma para la producción de biodiesel,” Scientia et Technica, vol. 1, no. 24, ene. 2004. [Online]. Available: https://doi.org/10.22517/23447214.7323
[11] B. R. Moser, Biodiesel Production, Properties, and Feedstocks. New York, NY: Springer New York, 2011, pp. 285–347. [Online]. Available: https://doi.org/10.1007/978-1-4419-7145-6_15
[12] A. da Silva César, D. E. Werderits, G. L. de Oliveira Saraiva, and R. C. da Silva Guabiroba, “The potential of waste cooking oil as supply for the brazilian biodiesel chain,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 246–253, 2017. [Online]. Available: https://doi.org/10.1016/j.rser.2016.11.240
[13] A. Villabona Ortiz, R. Iriarte Pico, and C. Tejada Tovar, “Alternativas para el aprovechamiento integral de residuos grasos de procesos de fritura,” Teknos revista científica, vol. 17, no. 1, pp. 21–29, jul. 2017. [Online]. Available: https://doi.org/10.25044/25392190.890
[14] Gobierno de España. (2020) Ministerio de Transición Ecológica y el Reto Demográfico. [Online]. Available: https://bit.ly/37zY23X
[15] W. D. Callister Jr. and D. G. Rethwisch, Materials science and engineering: an introduction. John Wiley & Sons, Inc., 2018. [Online]. Available: https://bit.ly/3oo2Krl
[16] H. A. González and D. H. Mesa, “La importancia del método en la selección de materiales,” Scientia Et Technica, vol. X, pp. 175–180, 2004. [Online]. Available: https://bit.ly/37EHrMs
[17] R. V. Rao, “A material selection model using graph theory and matrix approach,” Materials Science and Engineering: A, vol. 431, no. 1, pp. 248–255, 2006. [Online]. Available: https://doi.org/10.1016/j.msea.2006.06.006
[18] M. F. Ashby and K. Johnson, Materials Selection in Mechanical Design. Elsevier Ltd., 2016. [Online]. Available: https://doi.org/10.1016/C2009-0-25539-5
[19] M. F. Ashby, H. Shercliff, and D. Cebon, Materials: engineering, science, processing and design. Butterworth-Heinemann, 2018. [Online]. Available: https://bit.ly/3dSpRW4
[20] T. E. Tezduyar and Y. J. Park, “Discontinuitycapturing finite element formulations for nonlinear convection-diffusion-reaction equations,” Computer Methods in Applied Mechanics and Engineering, vol. 59, no. 3, pp. 307–325, 1986. [Online]. Available: https://doi.org/10.1016/0045-7825(86)90003-4
[21] W. F. Ramírez, Computational methods for process simulation. Butterworth-Heinemann, 1997. [Online]. Available: https://bit.ly/3mhsfc3
[22] A. Chakrabarty, S. Mannan, and T. Cagin, Multiscale Modeling for Process Safety Applications. Butterworth-Heinemann, 2015. [Online]. Available: https://bit.ly/2HujBbc
[23] W. B. J. Zimmerman, Process modelling and simulation with finite element methods. World Scientific, 2004. [Online]. Available: https://bit.ly/2G0a9vM
[24] R. Woodbury, Elements of parametric design. Routledge, 2010. [Online]. Available: https://bit.ly/2Hu2c2s
[25] R. de Luca, P. Fanelli, S. Mingozzi, G. Calabró, F. Vivio, F. Maviglia, and J. You, “Parametric design study of a substrate material for a demo sacrificial limiter,” Fusion Engineering and Design, vol. 158, p. 111721, 2020. [Online]. Available: https://doi.org/10.1016/j.fusengdes.2020.111721
[26] J. Monedero, “Parametric design: a review and some experiences,” Automation in Construction, vol. 9, no. 4, pp. 369–377, 2000. [Online]. Available: https://doi.org/10.1016/S0926-5805(99)00020-5