Analysis of the Hfo-1234ze as an Ecological Alternative In Domestic Refrigeration

Main Article Content

Cristian Andrés Andrade Terán http://orcid.org/0000-0002-0220-7481

Abstract

Food refrigeration is an essential process in homes, and thus a home refrigerator becomes an indispensable appliance. Being this one of the biggest consumers of electrical energy and contamination due to the refrigerant used for its operation, it is important to look for alternatives that improve this process. This study aims to implement the HFO, R12354ze as an ecological alternative in domestic refrigeration, in response to environmental demands to reduce climate change and deterioration of the ozone layer. Through a thermodynamic and heat transfer analysis, simulating the cooling cycle and the behavior of the fluid in heat exchange using specialized software and CFD, the HFO is presented as an acceptable alternative achieving cooling parameters which are between 5% and 8 % different from common refrigerators currently used, with an environmental cost up to 99% lower, without altering their energy efficiency. Taking advantage of the properties of the HFO, it is possible to improve the coefficient of performance of the cooling cycle by 12%.
Abstract 473 | PDF (Español (España)) Downloads 268 PDF Downloads 89 HTML (Español (España)) Downloads 63

References

[1] ONU. (2019) Día Internacional de la Preservación de la capa de ozono, 16 de septiembre. [Online]. Available: https://bit.ly/31DBnQf
[2] D. Fahey, P. A. Newman, J. A. Pyle, B. Safari, M. P. Chipperfield, D. Karoly, D. E. Kinnison, M. Ko, M. Santee, and S. J. Doherty, Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58. World Meteorological Organization, 01 2018. [Online]. Available: https://bit.ly/3oil19H
[3] L. Höglund-Isaksson, P. Purohit, M. Amann, I. Bertok, P. Rafaj, W. Schöpp, and J. Borken-Kleefeld, “Cost estimates of the kigali amendment to phase-down hydrofluorocarbons,” Environmental Science & Policy, vol. 75, pp. 138–147, 2017. [Online]. Available: https://doi.org/10.1016/j.envsci.2017.05.006
[4] A. Mota-Babiloni, J. Navarro-Esbrí, A. Barragán, F. Molés, and B. Peris, “Drop-in energy performance evaluation of r1234yf and r1234ze(e) in a vapor compression system as r134a replacements,” Applied Thermal Engineering, vol. 71, no. 1, pp. 259–265, 2014. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2014.06.056
[5] A. Yataganbaba, A. Kilicarslan, and I. Kurtbas, “Exergy analysis of r1234yf and r1234ze as r134a replacements in a two evaporator vapour compression refrigeration system,” International Journal of Refrigeration, vol. 60, pp. 26–37, 2015. [Online]. Available: https://doi.org/10.1016/j.ijrefrig.2015.08.010
[6] M. O. McLinden, A. F. Kazakov, J. Steven Brown, and P. A. Domanski, “A thermodynamic analysis of refrigerants: Possibilities and tradeoffs for Low-GWP refrigerants,” International Journal of Refrigeration, vol. 38, pp. 80–92, 2014. [Online]. Available: https://doi.org/10.1016/j.ijrefrig.2013.09.032
[7] D. Sánchez, I. Arauzo, J. Catalán Gil, R. Cabello, R. Doménech, and E. Torrella, “Evaluación energética de una instalación frigorífica empleando refrigerantes de bajo GWP,” in CYTEF 2016 – VIII Congreso Ibérico | VI Congreso Iberoamericano de las Ciencias y Técnicas del Frío Coimbra-Portugal, 3-6 mayo, 2016, 05 2016. [Online]. Available: https://bit.ly/31EdI29
[8] W. C. Whitman and W. M. Jonhson, Tecnología de la refrigeración y aire acondicionado Tomo II. Editorial Paraninfo, 2000. [Online]. Available: https://bit.ly/34u3xiN
[9] N. Jara and C. Isaza-Roldan, “Análisis comparativo de sistemas de refrigeración doméstica utilizando refrigerantes R600a y R134a,” Revista I+T+C: Investigación, Tecnología y Ciencia, vol. 1, pp. 7–15, 08 2015. [Online]. Available: https://bit.ly/2TnGIXo
[10] GASSERVEI, “Ficha técnica R-1234ze,” GASSERVEI, Tech. Rep., 2020. [Online]. Available: https://bit.ly/3dUDJ2e
[11] Honeywell, “The environmental alternative to traditional refrigerants. solstice ze refrigerant (HFO-1234ze (E)),” Honeywell, Tech. Rep., 2018. [Online]. Available: https://bit.ly/3mhCY6d
[12] N. A. Lai, “Equations of state for HFO-1234ze(E) and their application in the study on refrigeration cycle,” International Journal of Refrigeration, vol. 43, pp. 194–202, 2014. [Online]. Available: https://doi.org/10.1016/j.ijrefrig.2013.11.011
[13] E. W. Lemmon, I. H. Bell, M. L. Huber, and M. O. McLinden, REFPROP Documentation Release 10.0. National Institute of Standards and Technology (NIST), 2018. [Online]. Available: https://bit.ly/3omeSct
[14] K. A. Klein and F. L. Alvarado, EES-Engineering Equation Solver. Version 6.648 ND, F-Chart Software, Middleton, 2004.
[15] G. A. Longo, S. Mancin, G. Righetti, and C. Zilio, “R1234yf and R1234ze(e) as environmentally friendly replacements of R134a: Assessing flow boiling on an experimental basis,” International Journal of Refrigeration,
vol. 108, pp. 336–346, 2019. [Online]. Available: https://doi.org/10.1016/j.ijrefrig.2019.09.008
[16] D. Sánchez, R. Cabello, R. Llopis, I. Arauzo, J. Catalán-Gil, and E. Torrella, “Energy performance evaluation of R1234yf, R1234ze(e), R600a, R290 and R152a as low-GWP R134a alternatives,” International Journal of Refrigeration, vol. 74, pp. 269–282, 2017. [Online]. Available: https://doi.org/10.1016/j.ijrefrig.2016.09.020
[17] ANSYS, ANSYS Fluent Theory Guide. SAS IP, Inc., 2013. [Online]. Available: https://bit.ly/3jk7GtC
[18] H. Benjumea, C. Isaza-Roldan, S. Rio, N. Jara, and J. Ospina, “Simulación del flujo de aire al interior de un refrigerador doméstico nofrost,” in VII Congreso Ibérico de Ciencias y Técnicas del Frío, 06 2014. [Online]. Available: https://bit.ly/2TnHwvE